

Coding Faster:
Getting More Productive
with Microsoft® Visual
Studio®

Covers Microsoft® Visual Studio® 2005, 2008, and 2010

Zain Naboulsi
Sara Ford

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2011 by Zain Naboulsi and Sara Ford

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

ISBN: 978-0-7356-4992-7

1 2 3 4 5 6 7 8 9 M 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support
related to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us
what you think of this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are
property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft
Corporation, nor its resellers, or distributors will be held liable for any damages caused or alleged to
be caused either directly or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones
Production Editor: Adam Zaremba
Technical Reviewer: Kevin Stevens
Copyeditor: Richard Carey
Indexer: Ron Strauss
Proofreader: Nancy Sixsmith
Cover: Karen Montgomery
Compositor: Ron Bilodeau
Illustrator: Robert Romano

First and foremost to God and Jesus Christ for making this all possible.

To my mom, Helen Naboulsi, for always encouraging me to go above and beyond to reach my goals,

and to Russell Chandler for being the greatest nephew anyone could ever have.

Zain Naboulsi

Senior Developer Evangelist, Microsoft

To my parents, Jane and Louie Smolensky, for encouraging me to program on the computer when I was

5 years old, and to Beulah Bourgeois and Annabelle Fayard for being the best babysitters a little girl

could ever hope for.

Sara Ford

 v

Contents at a Glance

Part I Productivity Techniques
1 Getting Started . 3
2 Projects and Items . 43
3 Getting to Know the Environment . 83
4 Working with Documents . 153
5 Finding Things . 171
6 Writing Code . 209
7 Debugging . 291

Part II Extensions for Visual Studio
8 Visual Studio Extensions . 385

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 vii

Table of Contents
Foreword .xxiii

Introduction . xxvii

Part I Productivity Techniques
1 Getting Started . 3

01 .01 Running Multiple Versions of Visual Studio Side-By-Side 3
01 .02 Getting Table of Contents in Visual Studio 2010 Online Help 4

Online Help . 4
Using Classic View . 5

01 .03 Exporting Your Environment Settings . 6
01 .04 Remove Projects from the Recent Projects List . 9
01 .05 AutoRecover . 10
01 .06 Improving Performance by Changing the Visual Experience in

Visual Studio 2010 . 12
01 .07 Change Tool Window Animations . 14
01 .08 Importing or Changing Your Environment Settings 14
01 .09 Change Your Visual Studio Color Scheme . 17

Seeing What You Like . 18
Getting the Goods . 18
Changing Your Colors . 21
Resetting the Colors . 24

01 .10 Reset All Your Development Settings . 25
01 .11 Customize Your Toolbars in Visual Studio 2010: Toolbars Tab 27

Custom Toolbars . 28
01 .12 Customize Your Toolbars in Visual Studio 2010: Commands Tab 30

Rearrange . 32
Controls . 32
Buttons . 33
Modify Selection . 34

01 .13 Visual Studio Logging . 37
01 .14 Visual Studio Safe Mode . 38
01 .15 The ResetSettings Switch . 39

Two Different Machines . 39
Same Machine . 40

viii Table of Contents

2 Projects and Items . 43
02 .01 Search for Project Templates in the New Project Dialog Box 43

Good News . 44
Bad News . 44
More Good News . 44

02 .02 Recent Project Templates in the New Project Dialog Box 45
02 .03 Using Older Frameworks with Multi-Targeting . 45
02 .04 Create Web Application or Virtual Directory in IIS 46
02 .05 Multiple Startup Projects . 48
02 .06 Change the Default New Project Location . 50
02 .07 Track Active Item in Solution Explorer . 51
02 .08 Type-Ahead Selection Support in Solution Explorer 52
02 .09 Using Solution Folders . 54

Adding Solution Folders . 54
Removing Solution Folders . 55

02 .10 Navigating Property Tabs in the Project Properties 55
02 .11 Pin a Project to the Recent Projects List . 55
02 .12 Creating Temporary Projects . 56
02 .13 Create Your Own Item Template . 57
02 .14 Roll Your Own Project Template with the Export Template Wizard 64
02 .15 Organizing Your Custom Item Templates . 68
02 .16 Organizing Your Custom Project Templates . 71
02 .17 Reorganize the Default Item Templates . 74
02 .18 Reorganize the Default Project Templates . 77
02 .19 Change the Templates that Appear in the New Project or

Item Dialog Boxes . 80

3 Getting to Know the Environment . 83
03 .01 Rearrange Windows in Visual Studio 2010 Using the Guide Diamond . . 83
03 .02 Dock a Floating Tool Window Back to Its Previous Location 85
03 .03 Cycle Through Your Open Tool Windows . 86
03 .04 Closing Tool Windows . 87
03 .05 Expand and Collapse All in the Toolbox . 87
03 .06 Searching in the Toolbox . 88
03 .07 Navigate Among Tabs in the Toolbox . 89

 Table of Contents ix

03 .08 Window Layouts: The Four Modes . 90
Design View . 90
Debugging View . 91
Full Screen . 91
File View . 91

03 .09 Window Layouts: Design, Debug, and Full Screen 91
Design Mode . 91
Debug Mode . 92
Full Screen Mode . 93

03 .10 Working with Tabs in the Toolbox . 93
Creating Tabs . 93
Adding Items . 94
Custom Controls . 95
Renaming Tabs . 95
Deleting Tabs . 95

03 .11 Using Additional Browsers for Web Development 96
Adding New Browsers . 97
Changing the Default Browser . 97
Browser Window Size . 98
Removing Browsers . 98

03 .12 Auto-Hide All Tool Windows . 99
03 .13 Showing Hidden Tool Windows with the Auto Hide Channel 100
03 .14 Moving Tool Windows Around with Your Keyboard 102
03 .15 Keyboard Access to a Tool Window’s Toolbar . 103
03 .16 Command Prompt History . 104
03 .17 Command Prompt Tab Completion . 105

Simple Search . 105
Wildcard Search . 105
Finally . 107

03 .18 Undock and Dock a Single Tool Window in a Group 107
Undock . 107
Dock . 108

03 .19 Understanding Commands: Simple Commands . 110

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

03 .20 Understanding Commands: Aliases . 113
Create a New Alias . 114
Viewing Assigned Aliases . 114
Delete an Alias . 115

03 .21 Understanding Commands: Arguments and Switches 115
Basic Use . 116
Arguments and Switches . 116
List Current Options . 117
Reset Options . 117
Using the Arguments and Switches . 117
Make an Alias . 118

03 .22 Testing a Command . 119
03 .23 Understanding Commands: Running Commands 121

Shortcuts . 121
Command Window . 122
Immediate Window . 122
Find Combo Box . 122

03 .24 Find Keyboard Shortcuts . 122
03 .25 Keyboard Shortcuts: Additional Mapping Schemes 125
03 .26 Keyboard Shortcuts: Creating New Shortcuts . 127

Reset . 130
03 .27 Keyboard Shortcuts: Reset All Your Shortcuts . 131
03 .28 Understanding Commands: Logging Commands 132

Arguments . 133
Example . 133

03 .29 Export Your Window Layouts . 134
03 .30 Stop the Toolbox from Auto-Populating from the Solution 136
03 .31 Using External Tools . 136

Use Output Window . 140
Treat Output As Unicode . 140
Prompt For Arguments . 140
Close On Exit . 140

03 .32 Create Keyboard Accelerators for External Tools 141
03 .33 Exporting Your Command Window Aliases and External Tools List 143
03 .34 Creating and Using a Macro . 144
03 .35 Visual Studio Image Library . 147

Types of Files . 147
Image Library Contents . 148
Using the Images . 151

 Table of Contents xi

4 Working with Documents . 153
04 .01 Insert Documents to the Right of Existing Tabs . 153
04 .02 Recent Files . 154
04 .03 Working with Documents on Multiple Monitors . 155
04 .04 Navigate Open Document Windows . 157
04 .05 Close the Current Document Window . 158
04 .06 Open a File Location from the File Tab . 158
04 .07 Open the File Menu Drop-Down List from Your Keyboard 159
04 .08 Using the IDE Navigator . 160

Navigator Areas . 161
04 .09 Multiple Views of the Same Document . 163

Special Note for VB Users in Visual Studio 2010 163
Multiple Views . 164

04 .10 Closing Just the Selected Files You Want . 164
04 .11 Understanding the File Open Location . 165
04 .12 Show Previous Versions . 166
04 .13 Using Custom File Extension Associations . 168

5 Finding Things . 171
05 .01 Repeat Your Last Search . 171
05 .02 Using Quick Find . 172

Find What . 173
Look In . 173
Find Options . 174
Buttons . 176

05 .03 Using a Simple Quick Replace . 176
05 .04 Hide the Quick Find and Quick Replace Tool Window After

the First Match . 178
05 .05 Undo Quick Replace and Replace in Files . 179

Quick Replace (Ctrl+H) . 179
Replace in Files (Ctrl+Shift+H) . 180

05 .06 Using the Find Combo Box Keyboard Shortcuts . 182
Find (Ctrl+D) . 182
Run Command (Ctrl+/) . 182
Go To Line (Ctrl+G) . 183
Go To File (Ctrl+Shift+G) . 183
Set a Breakpoint (F9) . 183

xii Table of Contents

05 .07 Using Incremental Search . 184
05 .08 Search the Currently Selected String Without the Find Window 185
05 .09 Find In Files: Find Options . 186

Find What . 187
05 .10 Find In Files: Result Options . 190

Find Results [1,2] Window . 190
Navigation . 190
Clear All . 191
Display File Names Only . 191
Keep Modified Files Open After Replace All . 191

05 .11 Replace In Files: Basic Options . 192
Find Options . 192
Replace With . 192
Result Options . 193
Execution . 193

05 .12 Go To Definition for Cascading Style Sheets . 194
05 .13 How to Use Navigate To . 195
05 .14 Understanding Find Symbol . 196

Find What . 197
Look In . 197
Find Options . 199
Search Results . 199

05 .15 Find Symbol Results Shortcuts . 200
Go To Definition (F12) . 200
Go To Declaration (Ctrl+F12) . 201
Go To Reference (Shift+F12) . 201
Browse Definition . 202
Copy (Ctrl+C) . 203
Clear All . 203

05 .16 Replace in Files: Tagged Expressions . 203
Example . 204

05 .17 Customize Results in Find In Files Searches . 206
Variables . 207

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

 Table of Contents xiii

6 Writing Code . 209
06 .01 Zoom In or Out of Text in the Editor Using the Mouse Wheel 209
06 .02 Zoom In or Out of Text in the Editor . 210

Combo Box . 210
Keyboard . 211
Universal Zoom . 211

06 .03 How to Keep from Accidentally Copying a Blank Line 211
06 .04 Make IntelliSense Transparent . 212
06 .05 Cut or Delete the Current Line . 213

Cut . 214
Delete . 214

06 .06 Using the New IntelliSense: Keywords . 214
06 .07 Using the New IntelliSense: Pascal Case . 216
06 .08 Comment and Uncomment in Web Pages . 217

Comment . 217
Uncomment . 218

06 .09 Insert a Blank Line Above or Below the Current Line 218
06 .10 Transpose Lines, Words, and Characters . 219
06 .11 How to Cycle Through the Clipboard Ring . 220
06 .12 Using the Undo and Redo Stack . 221
06 .13 Undo and Redo Global Actions . 222
06 .14 How to Use Reference Highlighting . 223

Navigation . 223
Turning it Off . 224

06 .15 Moving or Selecting Between Matching Braces
(C++, C# Only) . 224

Moving . 225
Selecting . 225

06 .16 Invoke Statement Completion . 225
06 .17 Move Between the Common Tab and All Tab in Statement

Completion (VB) . 226
06 .18 Using Parameter Information . 227
06 .19 Using Quick Info . 228
06 .20 Word Completion . 228
06 .21 Drag and Drop Code into the Toolbox . 229
06 .22 Using Smart Tags from the Keyboard . 231

xiv Table of Contents

06 .23 Organize Using Statements (C# Only) . 232
Remove Unused Usings . 232
Sort Usings . 234
Remove and Sort . 234

06 .24 Switch Between Design and Source in Web Projects 235
Split View . 235

06 .25 Toggle Designer . 236
06 .26 Change the Default View in the HTML Editor . 236
06 .27 Jump Back to the Editor from Just About Anywhere 237
06 .28 Replacing Text with a Box Selection . 237
06 .29 Pasting the Contents of One Box Selection into Another 238
06 .30 Pasting a Single Selection into a Box Selection . 239
06 .31 Using Zero-Length Box Selection . 240
06 .32 View White Space . 241
06 .33 Collapsing Your Code with Outlining . 242

Minus Sign . 243
Vertical Line . 243
Click Anywhere in Area (Keyboard Shortcut) . 243
Click Anywhere in Area (Menu Item) . 243

06 .34 Using Hide Selection . 244
06 .35 Collapse to Definitions with Outlining . 246
06 .36 Cut, Copy, and Paste Collapsed Code with Outlining 247
06 .37 Understanding Word Wrap . 248
06 .38 Properties Window Keyboard Shortcuts . 249

Working with the Tool Window . 250
Working with Categories . 250
Property Items . 251

06 .39 Document Outline: Web Projects . 251
06 .40 Inserting Code Snippets . 253

Tab . 253
Keyboard Shortcut and Context Menu . 254
Result . 256

06 .41 Surround with a Code Snippet . 256
06 .42 Using Code Snippets . 258
06 .43 HTML Code Snippets . 259
06 .44 JavaScript Code Snippets . 260
06 .45 Using the Code Snippets Manager . 261
06 .46 Insert Quotes When Typing Attribute Values . 264

 Table of Contents xv

06 .47 Format the Current Document or Selection (Web) 265
06 .48 Using the Navigation Bar . 266
06 .49 HTML Editor Tag Navigation . 267
06 .50 Format HTML on Paste . 267
06 .51 Display HTML/CSS Warnings as Errors . 268
06 .52 Updating JScript IntelliSense . 269
06 .53 Using JScript Libraries in Other JScript Files . 270
06 .54 Create New Code Snippets from Existing Ones . 271
06 .55 Understanding the Navigation Stack . 275
06 .56 Navigate Backward and Navigate Forward Using Go Back Markers . . . 277
06 .57 Select from the Current Cursor Location to the Last Go Back Marker . . 278
06 .58 Track Changes in the Editor . 280
06 .59 Edit Read-Only Files . 281

Edit In-Memory . 283
Make Writable . 283

06 .60 Choosing CSS Versions . 283
Dedicated Style Sheets . 283
Embedded Styles . 284
Finally . 284

06 .61 Understanding Tag Specific Options . 285
Exploring the Tag Specific Options Dialog Box 285
Finally . 289

7 Debugging . 291
07 .01 Setting a Breakpoint with Code . 291

Compiler Directive . 292
07 .02 Using Ctrl+Alt+B to Open the Breakpoints Window 293
07 .03 Adding Labels to Breakpoints . 293
07 .04 Enable or Disable All Breakpoints . 295
07 .05 TODO Comments in the Task List . 296

VB . 296
C# . 296
C++ . 296

07 .06 Create Custom Tokens for the Task List . 297
Sharing Tokens . 299

07 .07 Create Code Shortcuts in the Task List . 300
07 .08 Code Definition Window . 301

xvi Table of Contents

07 .09 Save Changes Before Building . 302
Save Changes To Open Documents Only . 302
Prompt To Save All Changes . 303
Don’t Save Any Changes . 303

07 .10 Navigate Errors in the Error List . 303
07 .11 Ordering and Multicolumn Sorting in Tool Windows 304

Column Ordering . 304
Multicolumn Sorting . 305

07 .12 Pin a DataTip to Source Code . 305
07 .13 Create a Floating DataTip . 306
07 .14 Adding Comments to a DataTip . 307
07 .15 Use a DataTip to Edit a Value . 308
07 .16 DataTip Value from the Last Debug Session . 309
07 .17 Import and Export DataTips . 309
07 .18 Using the Call Hierarchy . 310
07 .19 Searching Breakpoints . 312
07 .20 Breakpoint Hit Count . 314

Break When The Hit Count Is Equal To . 315
Break When The Hit Count Is A Multiple Of . 315
Break When The Hit Count Is Greater Than Or Equal To 316

07 .21 Set a Breakpoint on a Function . 316
Breakpoints Window . 317

07 .22 Set a Simple Breakpoint Condition . 318
Is True . 319
Has Changed . 320
Special Notes . 320

07 .23 Set a Complex Breakpoint Condition . 321
07 .24 Setting a Breakpoint Filter . 324
07 .25 Setting a Tracepoint in Source Code . 325

Setting Tracepoints . 326
Change Default Message . 329

07 .26 Import and Export Breakpoints . 329
07 .27 Run to Cursor . 330

 Table of Contents xvii

07 .28 Using the Exception Assistant . 331
Exception Object and Description . 331
Troubleshooting Tips . 332
Help Online . 332
Actions . 333
Turning Off the Exception Assistant . 334
Unwind The Call Stack On Unhandled Exceptions 334

07 .29 Use a Specific Port for the Development Server (Web Applications) . . 335
07 .30 Application and Page Level Tracing . 336

Application Level Tracing . 336
Attributes . 337
Trace Details . 338
Page Level Tracing . 338
Combined Tracing . 339
Finally . 339

07 .31 The Watch Window: Watching and Changing Values 340
Watch Expressions . 340
Watch Window . 340
Creating a Watch Expression . 341
Changing Values . 342

07 .32 Understanding QuickWatch . 343
What Does It Do? . 343
Other Options . 344

07 .33 The Watch Window: Visualizers . 345
07 .34 The Watch Window: Refreshing Data . 346

Refresh Icons . 347
Turning It Off . 348

07 .35 The Watch Window: Adding Watches from Variable Windows 348
Locals Window . 348
Autos Window . 348
QuickWatch . 349
Watch [1, 2, 3, 4] Window . 349
Keyboard Mapping . 349

xviii Table of Contents

07 .36 Create Folders in Class View . 350
Create a New Folder . 351
Putting Items into Your Folder . 352
Removing Items from Folders . 352
Creating Subfolders . 352
Deleting Folders . 352

07 .37 Search in Class View . 353
View .ClassViewSearch Command . 354
Use a Previous Search . 354
Clear Your Search . 355

07 .38 Synchronize Your Class View . 355
07 .39 The Misnamed and Misunderstood Object Browser 356
07 .40 The Object Browser: Setting the Browsing Scope 358

Browse . 359
Edit Custom Component Set . 360

07 .41 The Object Browser: Navigation and References 362
Navigation . 363
References . 363

07 .42 The Exceptions Dialog Box . 365
07 .43 Setting a Breakpoint in the Call Stack Window . 367
07 .44 Setting a Tracepoint in the Call Stack Window . 369
07 .45 Using the WPF Tree Visualizer . 371
07 .46 Understanding Break All Processes When One Process Breaks 374
07 .47 Changing Context in the Locals Window . 376

Debug Location Toolbar . 377
Process . 377
Thread . 377
Stack Frame . 377

07 .48 Understanding the Autos Window . 378
Changing Values . 379
Current and Previous Statement . 379
VB Shows Three Statements on Either Side . 381

 Table of Contents xix

Part II Extensions for Visual Studio
8 Visual Studio Extensions . 385

Introducing Visual Studio Extensions . 385
Installing an Extension . 385
Installing from the Extension Manager . 386
Installing from the Visual Studio Gallery . 386
Installing Through Xcopy . 387
Inside a .vsix File . 388
Disabling an Extension . 388
Uninstalling an Extension . 389
Resources for Developing Extensions . 389

08 .01 Create Themes Using All Visual Studio Elements 389
Visual Studio Color Theme Editor . 389
To Use . 390
To Customize . 390
More Information . 391

08 .02 Insert Images into Your Code . 391
Image Insertion . 392
To Use . 393
To Save . 393
To Customize . 393

08 .03 Add Visual Guidelines to Your Code . 394
Editor Guidelines . 394
To Install . 394
To Use . 395
To Customize . 395

08 .04 Get More IntelliSense in Your XAML Editor . 395
XAML IntelliSense Presenter . 395
To Use . 396
For More Information . 396

08 .05 Sync the Solution Explorer to the Current File . 396
Solution Explorer Tools . 397
To Use . 397

08 .06 Add PowerCommands Options to the IDE . 398
PowerCommands for Visual Studio 2010 . 398
To Use . 398
For More Information . 400

xx Table of Contents

08 .07 Use Emacs Commands in the Editor . 400
Emacs Emulation . 400
To Use . 400
To Uninstall . 401
More Information . 401

08 .08 Submit to “The Daily WTF” . 401
Share Bad Code with the World . 401
To Install . 402
To Use . 402
More Information . 402

08 .09 Diff Files Using the Editor . 402
CodeCompare . 402
To Install . 403
To Use . 403
Features . 403
To Uninstall . 404
More Information . 404

08 .10 Run Windows PowerShell Within the IDE . 404
To Use . 404
More Information . 405

08 .11 Visualize OData in a Graphical View . 405
Open Data Protocol Visualizer . 405
To Use . 405
More Information . 406

08 .12 Run VIM Commands in the Editor . 406
To Use . 406
More Information . 406

08 .13 Check Spelling in Your Code . 407
Spell Checker . 407
To Use . 407

08 .14 Zoom Across All Files . 407
Presentation Zoom . 408
To Use . 408
Control Zooming with a Slider Using the
ZoomEditorMargin Extension . 408

 Table of Contents xxi

08 .15 View Code Blocks Using Vertical Lines . 409
StructureAdornment . 409
To Use . 409
To Customize . 410
To Uninstall . 410

08 .16 Get a Bird’s-Eye View of Your Code in an Editor Margin 411
AllMargins . 411
To Use . 411
To Uninstall . 412

08 .17 Build Projects from the Windows 7 Taskbar . 413
Win7 Taskbar Extension . 413
To Install . 413
To Use . 413
To Uninstall . 414

08 .18 Triple-Click to Select an Entire Line . 414
Triple Click . 414
More Information . 414

08 .19 Create Regular Expressions Within Your Code . 415
Regex Editor . 415
To Use . 415
More Information . 415

08 .20 Get More Productivity Tools in the IDE . 416
To Use . 416
To Customize the Document Tab Well User Interface 417

08 .21 Create and Find Code Snippets . 418
Snippet Designer . 418
To Use . 419
More Information . 419

08 .22 Document Your Code with Three Keystrokes . 419
GhostDoc . 419
To Use . 419
To Customize . 421
More Information . 421

xxii Table of Contents

08 .23 Customize Visual Studio Using Windows PowerShell 421
StudioShell . 422
To Use . 422
To Get Help . 423
To Customize . 423
More Information . 423

A Visual Studio Keyboard Shortcut Posters 425

Index . 427

 xxiii

Foreword
Visual Studio is quite possibly the most powerful and comprehensive software development
suite available. No matter your discipline—developer, test, architect, etc.—Visual Studio pro-
vides the tools you need to help get your job done.

However, Visual Studio handles such a large number of development tasks for so many
platforms that learning it can be an overwhelming process. Many learn just enough to solve
the problem at hand but don’t delve deep enough to unearth the gems that enable real
productivity.

Visual Studio contains numerous features and options that can help you perform your tasks
more effectively. Some are prominently advertised, but many of the real time-savers are bur-
ied in obscure dialog boxes and triggered with arcane keyboard shortcuts. While most of this
information can be learned by wading through hundreds of pages of documentation, many
of the more powerful features are yet undocumented. How can we possibly navigate the vast
forest that is Visual Studio? A guide is needed.

Fortunately, we have two.

For several years, Sara Ford has championed productivity with her highly successful Visual
Studio “Tip of the Day” blog. Between July 2007 and December 2008, Sara blogged nearly
400 Visual Studio tips and tricks that were essential for many of us (myself included) to
get closer to attaining Visual Studio mastery. After Sara completed her journey with Visual
Studio, Zain Naboulsi picked up the torch. Zain continues to blog Visual Studio tips and
tricks, digging into features in the latest releases and covering some of the popular Visual
Studio extensions that are available.

I vividly remember my first encounter with Zain. I had just joined Microsoft as a Program
Manager on the Visual Basic and C# IDE experiences and received an email from Zain saying
that he was taking the mantle from Sara and starting a Visual Studio tips and tricks blog. My
first thought was, who is this guy? Sara was an alumnus of the Visual Studio team and had a
great deal of “inside knowledge” to share. How could Zain go to the same level of depth that
she had? I wasn’t prepared for my initial impression to be shattered so thoroughly.

It didn’t take long for me to realize that Zain really knows his stuff. After that first email, Zain
kept in touch regularly with me and other members of the Visual Studio team. As he system-
atically pulled away the layers of Visual Studio to find the golden nuggets of productivity
beneath, he would ask questions or confirm the tips that he found. Often, Zain would find
features that I didn’t even know existed. In some cases, he even found bugs where some-
thing had been unintentionally left in the product (e.g., the infamous Debug.cleartextonfoo
command).

xxiv Foreword

What you hold in your hands is the crème de la crème of the sum of Zain and Sara’s Visual
Studio knowledge. In these pages, you will find a sure compass to help navigate the treacher-
ous peaks and vast oceans of Visual Studio. By putting these tips, tricks, and techniques into
practice, you’ll grow closer to attaining Visual Studio mastery and learn to travel in style.

Dustin Campbell
Program Manager, Visual Studio

It’s hard to imagine but if Sara Ford had her way, there never would have been a “Visual
Studio Tip of the Day” blog. Back in 2005, we were colleagues on the Visual Studio Editor
team who shared an office and a passion for making developers more productive. We both
became intrigued by an email with customer feedback, which was remarkable because all
of its suggested features were already in Visual Studio but the customer hadn’t discovered
them. We realized that many of the great productivity features that we developed in Visual
Studio 2005 such as Code Snippets and Smart Tags would go unnoticed by many developers
who weren’t looking for them. We brainstormed several different ways that we could help
customers discover all of the hidden functionality in Visual Studio until we arrived at the ulti-
mate solution: Putting a Visual Studio Tip of the Day on the Start Page.

At the time, the Start Page was being completely rewritten to include an RSS feed which
would be the perfect mechanism for users to learn how to use Visual Studio better one tip
at a time. We lobbied hard to have the Start Page point to a feed of Tips & Tricks for Visual
Studio. Unfortunately, there was too much skepticism that there were enough tips to gener-
ate new content every day and so the idea was rejected.

Defeated but undeterred, Sara was determined to demonstrate that not only were there
enough hidden gems but that there was a huge audience for a “Tip of the Day.” She had
recently started blogging and challenged herself to blog every workday until she ran out of
tips. Initially, we wrote a list of about 50 different tips before she set out on her challenge.
Over the following months and years, Sara has worked tirelessly to find hundreds of useful
tips, created an engaging blog and helped thousands of developers become better users of
Visual Studio.

As we were putting the finishing touches on Visual Studio 2010 last year, I was reassured to
find that Zain Naboulsi had stepped in to create the next generation of the Visual Studio
Tips and Tricks blogs. He’s engaged directly with the Visual Studio team to highlight each of
the new features that were introduced in the latest release and the greatest from previous
versions.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Foreword xxv

Based on their years of experience evangelizing Visual Studio Tips and Tricks, “Coding Faster”
distills this knowledge into one easy-to-read book which will make you a better user of Visual
Studio. Using the described techniques, you’ll learn to write code with fewer keystrokes, man-
age projects and documents with ease and powerful debugging techniques. It also intro-
duces Visual Studio Extensibility which allows you to create your own extensions or find those
provided by the community.

In retrospect, it’s fortunate that the tip of the day didn’t make it onto the Start Page as it led
Sara and Zain to write great blogs and this brilliant book to help everyone code faster.

Sean Laberee
Lead Program Manager, Visual Studio

 xxvii

Introduction
Visual Studio is sexy. In the world of Integrated Development Environments (IDEs), it stands
as a beautiful example of how environments should work. Yet many of the features created
to improve productivity, I believe, are largely neglected. Most developers use only a small
percentage of the capabilities in this wonderful product—not because they don’t want to use
them, but because developers don’t know they exist.

In most books that address the various .NET languages or technologies, Visual Studio seems
to be mentioned almost as an afterthought; to be fair, its focus is primarily on the language
or technology that’s the subject of the book, not the IDE—which is as it should be. On the
other side of the coin, books written about Visual Studio do focus on the product, but tend
to be broad in scope, describing features, but without saying much about their actual use.

The goal of this book is to arm you with techniques that you can apply immediately to im-
prove productivity. Use the content in this book anywhere, anytime, to dramatically reduce
the time required to perform just about any task in Visual Studio. You won’t find an exhaus-
tive treatment of every feature in Visual Studio in this book, but it contains sufficient cover-
age that we’re sure you’ll find something useful, regardless of how you use the product.

This is much more than just a tips and tricks book. Within these pages are—for the first time
ever—the keyboard mapping shortcuts, commands, and menu paths for features, along with
detailed descriptions of how to use them. We worked very hard to present the information in
a way that makes the book easy to read cover-to-cover or as a quick reference.

Who Should Read This Book
If you use Visual Studio 2005, 2008, or 2010, you should read this book. There are over 365
tips in this book (including the additional online Appendix), all selected with the single goal
of helping you be more productive by showing you how to use Visual Studio features. The
contents in this work are great on their own or as a prefect complement to any course, book,
or other learning tool as you explore Visual Studio.

Assumptions
This book assumes you have, at a minimum, Visual Studio Professional 2005, 2008, or 2010
installed. Specifically, it covers techniques that can be used in Visual Studio as well as exam-
ples in C++, C#, and/or VB where appropriate.

With a heavy focus on helping you get work done faster, we assume that you have a basic
understanding of how to use Visual Studio, and have had exposure to one of the many lan-
guages supported in the product.

xxviii Introduction

Organization of This Book
This book is divided into two sections. Part I, written by me, Zain Naboulsi, called
“Productivity Techniques,” provides information that can be used in your daily work with
Visual Studio; these techniques range from very easy to quite advanced methods of using the
product. The chapters are organized to take you through the most common daily tasks you
perform. Within each chapter the information is arranged, essentially in order, from beginning
to more advanced optimizations:

●● Chapter 1, “Getting Started,” shows key skills to have when starting up and using Visual
Studio.

●● Chapter 2, “Projects and Items,” shows ways to create and use projects and items more
effectively.

●● Chapter 3, “Getting to Know the Environment,” gives guidance on how to organize the
environment to best advantage.

●● Chapter 4, “Working with Documents,” illustrates how best to navigate and manipulate
document windows.

●● Chapter 5, “Finding Things,” is a collection of tips on how to find just about anything in
your code or code related in Visual Studio.

●● Chapter 6, “Writing Code,” the largest chapter, shows a host of techniques for using the
editor more efficiently.

●● Chapter 7, “Debugging,” the second largest chapter, shows you great techniques to im-
prove your debugging experience within the IDE.

Part II, “Extensions for Visual Studio,” written by Sara Ford and other authors, contains an ex-
amination of selected extensions from the Visual Studio Gallery that you can install to further
accelerate the Visual Studio experience.

Finally, we have included an entire second book of tips in Appendix B (downloadable at http://
go.microsoft.com/FWLink/?Linkid=223758) that were cut from the main book so that we could
keep the print size manageable. You are literally getting two books for the price of one.

Finding Your Best Starting Point in This Book
Each chapter—and in fact, almost every item—in Part I of this book stands on its own, so
feel free to begin reading wherever you like. However, I suggest that you start by choosing
the tasks that will have the greatest impact in your daily work. If most of your day is spent
debugging, then start with Chapter 7, “Debugging,” first. After you have a good handle on
using the features built-in to Visual Studio from Part I of this book, look in Part II to see if
there’s an extension that can help you advance your goals even further. Visual Studio has
many extensions that can improve your overall experience.

 Introduction xxix

Conventions and Features in This Book
This book presents information using conventions designed to make the information read-
able and easy to use.

Keyboard Settings
Throughout this book I refer to the keyboard settings often, so it is important to know the
connection between development settings and keyboard mapping schemes. When first in-
stalled, Visual Studio asks you to choose a collection of settings, as shown here:

The settings chosen are directly related to Tools | Options | Environment | Keyboard within
the “Apply the Following Additional Keyboard Mapping Scheme” dropdown list. For example,
when you choose Visual C# Development Settings, you will see Visual C# 2005 as the key-
board mapping, as shown here:

The following table lists the setting collection and its corresponding keyboard mapping
scheme:

set tings additional keyboard scheme

GEnERAl DEVElOPmEnT SETTInGS (Default)

PROjECT mAnAGEmEnT SETTInGS (Default)

VISuAl BASIC DEVElOPmEnT SETTInGS Visual Basic 6

VISuAl C# DEVElOPmEnT SETTInGS Visual C# 2005

VISuAl C++ DEVElOPmEnT SETTInGS Visual C++ 6

VISuAl F# DEVElOPmEnT SETTInGS (Default)

WEB DEVElOPmEnT (Default)

WEB DEVElOPmEnT (CODE Only) (Default)

xxx Introduction

Summary Information
One of the unique features of this book is the summary information at the top of every item.
All tips will contain a table with one or more pieces of summary information that looks like
this example:

DEFAulT Ctrl+Alt+F1 (help settings); F1 (view help)

VISuAl BASIC 6 Ctrl+Alt+F1 (help settings); F1 (view help)

VISuAl C# 2005 Ctrl+F1, M (help settings); Ctrl+F1, Ctrl+M (help settings); F1 (view help)

VISuAl C++ 2 Ctrl+Alt+F1 (help settings); F1 (view help)

VISuAl C++ 6 Ctrl+Alt+F1 (help settings); F1 (view help)

VISuAl STuDIO 6 Ctrl+Alt+F1 (help settings); F1 (view help)

WInDOWS Alt, H, S (help settings); Alt, H, V (view help)

mEnu Help | Manage Help Settings; Help | View Help

COmmAnD Help .ManageHelpSettings; Help .F1Help

VERSIOnS 2010

lAnGuAGES All

CODE vstipTool0120

Here is what each piece of information means:

●● Default to Visual Studio 6—Keyboard shortcuts assigned that are mapped to the
choice made for development settings. These settings can be found at Tools | Options |
Environment | Keyboard. If absent, implies there are no keyboard shortcuts that apply.

 Introduction xxxi

●● Windows—Keyboard shortcuts that navigate the Menu Bar for commands. If absent,
implies there are no Menu Bar shortcuts that apply.

●● menu—Menu Bar path for using a command. Help | Manage Help Settings means click
on the Help menu and choose Manage Help Settings item underneath it. If absent, im-
plies the item can not be accessed from the Menu Bar.

●● Command—Visual Studio command used to assign keyboard shortcuts, aliases, run
macros, etc. Found at Tools | Options | Environment | Keyboard. If absent, implies there
is no command available for this activity.

●● Versions—Versions of Visual Studio that support the information given in the tip. If
absent, implies all versions are supported.

●● languages—Languages supported (C++, C#, and/or VB). If absent, implies all languages
are supported.

●● Code—Unique identifier for each tip for looking up references to the tip in the book,
online, etc.

Additional Information
●● Boxed elements with labels such as “Warning” are used to tell you about items that may

impact you negatively. Be aware that these activities are done at your own risk.

●● Boxed elements with labels such as “Note” provide additional information or alternative
methods for completing a step successfully.

●● Text that you type (apart from code blocks) appears in bold.

●● A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Ctrl+Alt+L” means that you hold down the Ctrl key while you
press the Alt key and the L key.

●● A comma (,) between key names means you press each key separately. For example,
“Alt+T, O” means you hold down Alt while you press T then let up on the keys and fi-
nally press O by itself.

●● A vertical bar between two or more menu items (e.g., File | Close), means that you
should select the first menu or menu item, then the next, and so on.

xxxii Introduction

System Requirements
You will need the following hardware and software to complete the practice exercises in this
book.

Software Requirements
●● Windows XP (x86) with Service Pack 3—all editions except Starter Edition

●● Windows Vista (x86 & x64) with Service Pack 2—all editions except Starter Edition

●● Windows 7 (x86 & x64)

●● Windows Server 2003 (x86 & x64) with Service Pack 2

●● Windows Server 2003 R2 (x86 & x64)

●● Windows Server 2008 (x86 & x64) with Service Pack 2

●● Windows Server 2008 R2 (x64)

Supported Architectures:
●● 32-Bit (x86)

●● 64-Bit (x64)

Hardware Requirements
●● Computer that has a 1.6GHz or faster processor

●● 1 GB (32-Bit) or 2 GB (64-Bit) RAM (Add 512 MB if running in a virtual machine)

●● 3 GB of available hard disk space

●● 5400 RPM hard disk drive

●● DirectX 9 capable video card running at 1024 x 768 or higher-resolution display

●● DVD-ROM Drive

Depending on your Windows configuration, you might require Local Administrator rights to
install or configure Visual Studio.

 Introduction xxxiii

Acknowledgments
From day one this book has been a community-driven effort. The readers of my (Zain) and
Sara’s blogs have been a constant source of content, comments, and ideas. Our heartfelt
thanks for all our readers have done to make this book a reality.

I used to make fun of those people who win awards on TV because they always have a huge
list of people to thank and never seem to get through them. It looks like it’s my turn now and
I know that I will forget someone, so let me just say that behind every effort like this you will
always have a great deal of people helping you in one way or another. Below is just a partial
list of people Sara and I want to thank for contributing, directly or indirectly, to the effort:

Russell Jones and Adam Zaremba—Editors at O’Reilly Media, who herded the cats to make
this book happen.
Kevin Stevens—Who came up with the name of the book and was instrumental in the
technical review process.
Paul Millsaps, Bill Needels—For doing some of the technical review for the book.
Sean Laberee—Senior Program Manager Lead at Microsoft who helped both Sara and me
get started with Tips and Tricks.
Dustin Campbell—Program Manager at Microsoft who continues to be a constant source of
information when I get stuck on a feature or concept.
Brittany Behrens—Program Manager at Microsoft who helped me during those first tenuous
days after I took over Sara’s work.
Matt Manela—for writing the content for the Snippet Designer extension.
Andrew Steele—for writing the content for the Productivity Power Tools extension.
Jim Christopher—for writing the content for both the GhostDoc and the StudioShell
extensions.
Terry Leeper—Principal Architect, Windows C++ Team, my main contact with the C++ folks
and a good friend that has helped me resolve questions about features since I started doing
the tips.
Lisa Feigenbaum and Beth Massi—Program Managers at Microsoft who constantly provided
guidance and support as the content of the book evolved.
Brian Moore—Director, DPE Central Region, for providing support and being a great manager.
Clint Edmonson—Senior Architect Evangelist at Microsoft who I have toured with throughout
the country delivering Visual Studio talks to thousands of people.
Phil Wheat—My best friend at Microsoft and a constant source of information. Phil is easily
the smartest person I know.
Jared Bienz, Mike Azocar—Very good friends who have been great to bounce ideas around
as I worked on the book.
Rob Bagby, Mike Benkovich, John Weston, Keith Combs—My old Microsoft Across America
buddies.

Finally, Sara Ford wishes to thank Dr. Terrance Delaney and Dr. Michael McMurray for fixing
her chronic shin splints during the course of writing this book.

xxxiv Introduction

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=226221

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

Part I

Productivity Techniques

In this part:
Chapter 1: Getting Started . 3
Chapter 2: Projects and Items . 43
Chapter 3: Getting to Know the Environment . 83
Chapter 4: Working with Documents . 153
Chapter 5: Finding Things . 171
Chapter 6: Writing Code . 209
Chapter 7: Debugging . 291

 3

Chapter 1

Getting Started

“A beginning is the time for taking the most delicate care […]”

—Frank Herbert, “Dune”

This chapter addresses tasks that would be immediately beneficial as you work in Visual
Studio. The main themes here are exporting your development settings, learning the Start
Page, adjusting your performance, and other key tasks.

This chapter is arguably the most important one you will read in this book—and yet, I sus-
pect, the one people will think they need the least. If you have been using Visual Studio for
any length of time, you might easily feel that the tasks in in this chapter have little applica-
tion to your situation. But whether you have been using Visual Studio for ten days or ten
years, these tips will help ensure that all your other efforts go smoothly, so taking time to
absorb the contents is definitely worthwhile.

01.01 Running Multiple Versions of Visual Studio Side-By-Side

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0054

People often ask whether you can run multiple versions of Visual Studio side-by-side on the
same machine. The answer is yes you can!

You can find documentation on MSDN, in the topic “Installing Visual Studio Versions Side-by-
Side,” at http://msdn.microsoft.com/en-us/library/ms246609.aspx.

The recommendation is that you install multiple versions from oldest to newest. So you
would install Visual Studio 2005, 2008, and then 2010—in that order.

http://msdn.microsoft.com/en-us/library/ms246609.aspx

4 01 .02 Getting Table of Contents in Visual Studio 2010 Online Help

01.02 Getting Table of Contents in Visual Studio 2010 Online Help

DEFAulT Ctrl+Alt+F1 (help settings); F1 (view help)

VISuAl BASIC 6 Ctrl+Alt+F1 (help settings); F1 (view help)

VISuAl C# 2005 Ctrl+F1, M (help settings); Ctrl+F1, Ctrl+M (help settings); F1 (view help)

VISuAl C++ 2 Ctrl+Alt+F1 (help settings); F1 (view help)

VISuAl C++ 6 Ctrl+Alt+F1 (help settings); F1 (view help)

VISuAl STuDIO 6 Ctrl+Alt+F1 (help settings); F1 (view help)

WInDOWS Alt, H, S (help settings); Alt, H, V (view help)

WInDOWS KEyBOARD Alt, H, S (help settings); Alt, H, V (view help)

mEnu Help | Manage Help Settings; Help | View Help

COmmAnD Help .ManageHelpSettings; Help .F1Help

VERSIOnS 2010

CODE vstipTool0120

I have to admit I don’t like the new online help in Visual Studio 2010. Not that I think it’s bad
per se, but I was just used to the old help system’s look and feel—particularly the table of
contents list.

If you are like me and want to get that classic help look-and-feel back for online help, you
need to do two things.

Online Help
First, you need to set your default help to online help (you need Internet connectivity to use
this feature) by selecting Help | Manage Help Settings. Then click Choose Online Or Local
Help.

Select I Want To Use Online Help, and click OK.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 1 Getting Started 5

Using Classic View
Now that you are using online help, Go to Help | View Help to see a page similar to the
following:

In the upper-right corner of the page, if you see the Preferences link, click it.

Note You may not see the Preferences link but instead just three links to Lightweight,
ScriptFree, and Classic. In this case, just click Classic and skip the next step.

Choose Classic and click OK.

6 01 .03 Exporting Your Environment Settings

Now your help will use the old-style contents list.

01.03 Exporting Your Environment Settings

WInDOWS Alt,T, I

mEnu Tools | Import and Export Settings

COmmAnD Tools .ImportandExportSettings

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0021

Exporting your environment settings is a great way to back them up. You can export your
settings by selecting Tools | Import And Export Settings Wizard.

 Chapter 1 Getting Started 7

The Export Selected Environment Settings option lets you save your settings to a .vssettings
file.

Click Next to see the Choose Settings To Export dialog box.

You can expand the areas to choose the items you want to include or exclude.

By default, almost everything is selected except for items that could expose sensitive infor-
mation. You can tell which options these are by the yellow warning symbol icon next to the
item.

8 01 .03 Exporting Your Environment Settings

After you make your choices and click Next, you can pick the location (C:\users\<current
user>\documents\visual studio <version>\settings, by default) and the filename (the current
date, by default) where you want to save the exported information.

Warning If you don’t give your exported settings good names it will be hard to figure out what
they are for later. For example, if you are just exporting your favorite black theme fonts and colors,
a name like “Fonts and Colors (Black Theme) 2010-07-05” would make sense.

When you click Finish, Visual Studio exports your settings, and the following dialog box
appears.

If you are curious, the exported file is just an XML file. You can open it in Notepad and see
the contents, as shown in the following illustration.

 Chapter 1 Getting Started 9

01.04 Remove Projects from the Recent Projects List

WInDOWS Alt,F, J, [Number]

mEnu File | Recent Projects and Solutions

VERSIOnS 2010

CODE vstipTool0017

In Visual Studio 2010, you can now remove projects from the Recent Projects list on your
Start Page.

Just right-click the project, and select Remove From List, as shown in the following illustra-
tion. That’s it. The project is removed from the list but not deleted. If you want to perma-
nently delete the project, you need to do that yourself from the filesystem.

10 01 .05 AutoRecover

01.05 AutoRecover

WInDOWS Alt,T, O

mEnu Tools | Options | Environment |
AutoRecover

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0019

AutoRecover can be a real life saver if the development environment crashes or if a power
outage occurs. It’s simple to use: Just go to Tools | Options | Environment | AutoRecover.

To turn this feature off (not recommended), you can clear the Save AutoRecover Information
Every check box. Here’s an explanation of what the other options do:

●● n minutes Determines how often Visual Studio saves AutoRecover information for
files. The default is to save every five minutes, but you can adjust that interval up or
down depending on your needs. There is an inverse relationship between this value
and the frequency of your updates to code. If you make frequent code updates, you
should set a smaller save interval. Conversely, if you make relatively infrequent code
updates, you can increase this interval. It’s better to err by using an interval that’s too
short rather than too long; in other words, it’s better to take a performance hit from file
I/O than to lose a ton of work.

●● n days Determines how long Visual Studio keeps AutoRecover files in the Backup
Files directory. The default is seven days, which is adequate for most situations. If you
work with a lot of projects over a short period of time, you might want to decrease this
number to keep the Backup Files directory from getting too cluttered. If you’re not sure
about what you need for this value, it’s better to guess high and later reduce the num-
ber as needed.

I want to be clear about what exactly gets saved and where it gets saved. First, recovered files
are stored at My Documents\Visual Studio <version>\Backup Files\<projectname>. But not
every file is saved here. The backup folder is empty when you first create a solution in Visual
Studio.

When I make a change to a file and save the change, I wait five minutes to see the result.

 Chapter 1 Getting Started 11

There’s still nothing there, because Visual Studio knows there is no need to recover a saved
file. But if I make a change to a file without saving it and wait another five minutes, here is
what you see:

At this point, the AutoRecover information appears because there are unsaved changes. If
Visual Studio crashes now, you would need to make a decision about whether to recover the
unsaved changes or keep the last saved version. Giving you that choice is the essential func-
tion of the AutoRecover feature.

When you do finally have to recover a file, you will see the following dialog box.

12 01 .06 Improving Performance by Changing the Visual Experience in Visual Studio 2010

To explain the terminology in the preceding dialog box:

●● Recovered files
Lists the file(s) that can be recovered. Use a check box to select or clear the files you
want to keep as well as to see some basic information.

●● <File name> Summary
Shows detailed information about the currently selected file, including date/time infor-
mation, location of the backup file, and the destination location where the recovered
file will be saved.

●● Recover Selected Files
Performs a recovery action on the selected file(s), copying the recovered source file to
the previously indicated destination.

●● Do not Recover
Closes the dialog box without recovering any listed files.

01.06 Improving Performance by Changing the Visual Experience in Visual
Studio 2010

WInDOWS Alt,T, O

mEnu Tools | Options | Environment | General | Visual Experience

COmmAnD Tools .Options

VERSIOnS 2010

CODE vstipEnv0017

Visual Studio 2010 automatically adjusts the visual experience depending on the situation.
For example, it might eliminate or reduce the use of gradients and animations when running
in Remote Desktop or virtual machine environments. It also makes use of hardware graphics
acceleration when that’s available.

In some situations, you can improve Visual Studio’s performance by changing its Visual
Experience manually. To change these settings, select Tools | Options | Environment | General
| Visual Experience to see the following dialog box.

 Chapter 1 Getting Started 13

Clear the Automatically Adjust Visual Experience Based On Client Performance check box.

Note As you work with the preceding options, the message at the bottom of the dialog box
does not change until you click OK to commit the changes you have made.

Following is a brief explanation of what each option does:

●● Enable Rich Client Visual Experience This option gives you gradients and anima-
tions (also known as “eye candy”) for elements such as sliding tool windows and so on.
If you leave this option selected, Visual Studio uses these rich animations in all scenarios—
including remote sessions. You should usually turn this option off in such situations to
get a bump in performance.

●● use Hardware Graphics Acceleration If Available This option lets you decide
whether Windows Presentation Foundation (WPF) hardware acceleration is something
you want. If this can benefit you, you’ll notice a clear change in performance when you
enable or disable this option. Make sure to test both scenarios.

Note If you have a system whose performance doesn’t suffer when animations and gradients
are turned on, a little eye candy can be a good thing, so this tip is really for those folks who are
having performance issues in their Visual Studio experience, either locally or remotely.

Now that you have played with the preceding options a bit, you might be wondering wheth-
er you can actually see how much they can improve (or hurt) performance. The Windows
SDK includes a tool called WPFPerf that enables you to measure WPF performance. You
can find a great article on how to use it at the Microsoft WindowsClient.NET site, at http://
windowsclient.net/wpf/perf/wpf-perf-tool.aspx.

Also, when using Visual Studio 2010 over remote sessions, you should definitely read the
article titled “Optimizing Visual Studio 2010 and WPF Applications for Remote Desktop,” at
http://blogs.msdn.com/b/jgoldb/archive/2010/02/27/optimizing-visual-studio-2010-and-wpf-
applications-for-remote-desktop.aspx. This article provides important information about how
to dramatically improve performance over Remote Desktop.

http://windowsclient.net/wpf/perf/wpf-perf-tool.aspx
http://windowsclient.net/wpf/perf/wpf-perf-tool.aspx
http://blogs.msdn.com/b/jgoldb/archive/2010/02/27/optimizing-visual-studio-2010-and-wpf-applications-for-remote-desktop.aspx
http://blogs.msdn.com/b/jgoldb/archive/2010/02/27/optimizing-visual-studio-2010-and-wpf-applications-for-remote-desktop.aspx

14 01 .07 Change Tool Window Animations

01.07 Change Tool Window Animations

WInDOWS Alt,T, O

mEnu Tools | Options | Environment | General

COmmAnD Tools .Options

VERSIOnS 2005, 2008

CODE vstipEnv0018

In the tip vstipEnv0017 (“Improving Performance by Changing the Visual Experience”, page
14), you saw a discussion of how you can improve the visual performance of Visual Studio
2010. Now let’s look at Visual Studio 2008 and 2005. You can change the animation speed of
tool windows in Visual Studio 2008 and 2005, but why would you want to do this?

The answer is that you can get a performance boost by speeding up or completely turning
off the animation. Select Tools | Options | Environment | General, and locate the Animate
Environment Tools option.

I suggest you turn off this feature to begin with, to see whether you notice any performance
improvements. Later, if you want your animations back, turn on the option and set the slider
to the far-right side (the fastest speed). As you test the performance, you can adjust it back
to the left to determine the best setting for you.

01.08 Importing or Changing Your Environment Settings

WInDOWS Alt,T, I

mEnu Tools | Import and Export Settings

COmmAnD Tools .ImportandExportSettings

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0022

Assuming you have exported your settings (vstipEnv0021, “Exporting Your Environment
Settings”, page 6), you can import your settings by going to Tools | Import And Export
Settings Wizard and selecting Import Selected Environment Settings:

 Chapter 1 Getting Started 15

This setting enables you to import a previously exported .vssettings file.

After you click Next on the Welcome page shown in the preceding illustration, you have the
option to save your existing settings (recommended) before overwriting or to just overwrite
them:

16 01 .08 Importing or Changing Your Environment Settings

Click Next, and you can choose from the default settings, settings that have been saved pre-
viously, or you can browse for your own .vssettings file:

Now click Next again to choose what settings you want to import. All the previously export-
ed settings are selected by default except for Command Window Aliases, External Tools List,
and Import and Export Settings, which are considered potentially dangerous.

Warning You have to determine the potentially dangerous areas for yourself, but if doing a full
export or import, you would most likely check all the items in this dialog. It is not recommended
that you share full exports with team members as there may be information in the file you don’t
want to share. Instead, just export the items you want to share with team members in a separate
file.

 Chapter 1 Getting Started 17

After you have checked (or unchecked) the items you want, click Finish to import the settings
and to see the final page of the wizard:

Now, just click Finish and you are done.

01.09 Change Your Visual Studio Color Scheme

WInDOWS Alt,T, I

mEnu Tools | Import and Export Settings

COmmAnD Tools .ImportandExportSettings

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0034

Ever see a set of colors your friend or coworker has and wish you could get it too? Ever go to
http://studiostyles.info and want some of those cool color schemes?

http://studiostyles.info/

18 01 .09 Change Your Visual Studio Color Scheme

Well you can get the colors you want! Let’s walk through how it’s done.

Seeing What You Like
First, you see a seriously cool color scheme on someone’s screen or at the Studio Styles site:

Getting the Goods

On someone’s computer
Now that you see what you like, get them to export their fonts and colors. Go to Tools |
Import And Export Settings:

 Chapter 1 Getting Started 19

Click Next, and export only the fonts and colors—nothing else:

20 01 .09 Change Your Visual Studio Color Scheme

Click Next, give the settings a cool name, and click Finish:

On the Studio Styles site
Click the style you want:

Choose your Visual Studio version, click Download This Scheme, and follow the instructions in
the next section:

 Chapter 1 Getting Started 21

Changing Your Colors
When you have a .vssettings file you want to import, copy or move the file to your computer.
While you can put the file anywhere you want on your system, I prefer to put it with the oth-
er settings files located at C:\Users\<user>\Documents\Visual Studio <version>\Settings:

Now just go to Tools | Import And Export Settings on your computer:

22 01 .09 Change Your Visual Studio Color Scheme

Make sure that Import Selected Environment Settings is selected, as shown in the preceding
illustration, and click Next. If you haven’t backed up your settings in a while, feel free to do
so. Check out vstipEnv0034 (“Change Your Visual Studio Color Scheme”, page 17) if you want
more information on exporting your settings:

 Chapter 1 Getting Started 23

Choose the settings file that has the color scheme you want:

Note Click Browse to find your file if you didn’t put it in your Settings folder.

Click Next. Verify that the file is importing only fonts and colors, and then click Finish:

24 01 .09 Change Your Visual Studio Color Scheme

Resetting the Colors
You should have your new colors. If things get bad (for example, you get colors you don’t like
and didn’t make a backup of your old colors) and you need to get the default colors back, all
you have to do is go to Tools | Options | Fonts And Colors and click Use Defaults.

Warning Clicking Use Defaults is an option that wipes out any custom colors used previously.D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 1 Getting Started 25

01.10 Reset All Your Development Settings

WInDOWS Alt,T, I

mEnu Tools | Import and ExportSettings

COmmAnD Tools .ImportandExport Settings

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0023

Sometimes you need to get all your settings back to their original state. You can do this with
the Reset All Settings option found under Tools | Import And Export Settings:

Warning Use the Reset All Settings option at your own risk. It will reset your settings, including
a reset of your Toolbox, getting rid of any custom items you have put in there.

After you click Next on the Welcome page shown in the preceding illustration, you see the
option to save your current settings. You should absolutely do this.

26 01 .10 Reset All Your Development Settings

The next screen lets you choose from the list of default settings:

 Chapter 1 Getting Started 27

Choose your default settings, and click Finish. After the reset operation runs, it resets all
your settings. This is definitely something you would do as a last resort, and remember, you
can always bring back your old settings by importing settings you saved earlier (see vsti-
pEnv0021, “Exporting Your Environment Settings”, page 6).

01.11 Customize Your Toolbars in Visual Studio 2010: Toolbars Tab

WInDOWS Alt,T, C

mEnu Tools | Customize

COmmAnD Tools .Customize

VERSIOnS 2010

CODE vstipEnv0030

You can customize any toolbar in Visual Studio 2010. Just click the drop-down arrow to the
right of any toolbar, and then click Add Or Remove Buttons:

Then click Customize:

Alternatively, you can go to Tools | Customize on the menu bar. Whichever option you
choose opens the Customize dialog box:

28 01 .11 Customize Your Toolbars in Visual Studio 2010: Toolbars Tab

Custom Toolbars
As shown in the preceding illustration, the Toolbars tab lists all the available toolbars. After
you click New to create a customized toolbar, you are prompted to give the new toolbar a
name:

 Chapter 1 Getting Started 29

After you name it, you can delete the custom toolbar by clicking Delete, or you can change it
by clicking Modify Selection to rename or relocate the toolbar:

Although you can rename custom toolbars by clicking Modify Selection, default toolbars
can’t be changed in this way:

Clicking Keyboard at the bottom of the Customize dialog box takes you to the Tools |
Options | Keyboard area, where you can add keyboard shortcuts for selected commands.
(See vstipTool0063, “Keyboard Shortcuts: Creating New Shortcuts”, page 127, for details.)

30 01 .12 Customize Your Toolbars in Visual Studio 2010: Commands Tab

01.12 Customize Your Toolbars in Visual Studio 2010: Commands Tab

WInDOWS Alt,T, C

mEnu Tools | Customize

COmmAnD Tools .Customize

VERSIOnS 2010

CODE vstipEnv0031

You can customize any toolbar in Visual Studio 2010. Just click the drop-down arrow to the
right of any toolbar, and then click Add Or Remove Buttons:

 Chapter 1 Getting Started 31

Then click Customize:

Alternatively, you can go to Tools | Customize on the menu bar.

Either option you choose opens the Customize dialog box:

Click the Commands tab:

Note For information about the Toolbars tab, see vstipEnv0030, “Customize Your Toolbars in
Visual Studio 2010 Toolbars Tab”, page 27.

32 01 .12 Customize Your Toolbars in Visual Studio 2010: Commands Tab

As you can see, the Customize dialog box is fairly complex, so let’s break it down into its
parts as we look at an example.

Rearrange
First is the choice of menu or toolbar to modify. In this case, choose the Editor Context
Menus | Code Window option, which is what you see when you right-click while writing code:

Controls
Next is the Controls area that shows the items on the menu or toolbar you have chosen to
modify. For this example, it shows the items available when you right-click in a code window:

 Chapter 1 Getting Started 33

Remember that not all the items you see are available all the time because these items show
up only in the proper context. So while it seems you have a large number of buttons cur-
rently available, when you right-click in your code window, this is an example of what you will
currently see:

Buttons
Finally, let’s look at the area of the dialog box that has all the buttons that actually perform
actions:

●● Add Command
Lets you add a new item to the existing menu or toolbar.

●● Add new menu
Creates a new menu in the existing menu or toolbar.

●● Delete
Removes the current item from the Controls area.

●● move [up or Down]
Changes the location of the item in the Controls area.

34 01 .12 Customize Your Toolbars in Visual Studio 2010: Commands Tab

Modify Selection
Choosing Modify Selection enables you to make changes to the existing item in the Controls
area, such as resetting it to the default settings, changing the name, and modifying text
visibility options. Modify Selection also enables you to make a new group on the menu or
toolbar:

Finally, the Reset All option resets every item in the Controls area to its default settings. This
capability is particularly useful if you have made a lot of changes.

Getting back to our example: Let’s assume you want to add the comment and uncomment
items to the context menu so that you can use them when you select some code. First, click
Add Command to bring up the Add Command dialog box:

Now you need to figure out where the comment and uncomment items are located. How
would you do this? Well, the best path is usually to see whether the item can be found on a
menu somewhere and then use that as a clue:

 Chapter 1 Getting Started 35

Because the items you want are off the Edit menu, you can search there first. It turns out the
items you want are called Selection Comment and Selection Uncomment:

Find each one of these items, and click OK to add them to the Controls list:

36 01 .12 Customize Your Toolbars in Visual Studio 2010: Commands Tab

It would be nice to have these buttons in their own group, so select the item in the Controls
dialog box, shown in the preceding illustration, where you would like the group line to be
(Marker Commands, in this case), and then click Modify Selection and choose Begin A Group:

This creates a new group line, and your commands are in their own group:

Click Close and go to any code area. Select some code, right-click, and select Comment
Selection:

It works perfectly, and you are all set to begin making your own modifications to your
environment:

 Chapter 1 Getting Started 37

01.13 Visual Studio Logging

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0048

There’s no doubt Visual Studio is an awesome piece of software, but occasionally you might run
into a problem loading it. Did you know that it comes with a logging switch? While the docu-
mentation (http://msdn.microsoft.com/en-us/library/ms241272.aspx) is lacking, the community
comment contributed by Paul Harrington on the Visual Studio team helps a great deal.

Essentially, the syntax is as follows:

devenv.exe /log [filename]

The [filename] is optional and, if not specified, the ActivityLog.xml file is called by default.
The path is to the log file is:

%APPDATA%\Microsoft\VisualStudio\<version>\ActivityLog.xml

Give it a try. Go to the Visual Studio command prompt, and enter devenv.exe /log:

You can then navigate to the file location:

When you open the log file, the following illustration provides an example of what you might see:

http://msdn.microsoft.com/en-us/library/ms241272.aspx

38 01 .14 Visual Studio Safe Mode

Fortunately, an XML style sheet (XSL) comes with the data, so if you view the XML file in your
browser, you can see a much cleaner view:

Now you can easily see the logging information and look for any issues.

01.14 Visual Studio Safe Mode

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0050

Occasionally you have a situation where Visual Studio might not start up correctly or at all.
Using Visual Studio in safe mode, you can load only the default environment, services, and
shipped versions of third-party packages to see whether the problem is caused by one or
more third-party add-ins. Just go to the Visual Studio command prompt, and type
devenv.exe /safemode:

 Chapter 1 Getting Started 39

Note Although I don’t show it here, I suggest using the Visual Studio logging feature before
running safe mode to see whether it can help you determine the source of the problem. For
more information, see vstipEnv0048, “Visual Studio Logging”, page 37.

When Visual Studio starts up, it indicates it is running in safe mode in the title bar:

From here, you can start determining what might have caused Visual Studio to fail and rem-
edy the issue.

01.15 The ResetSettings Switch

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0047

Visual Studio supports several switches. One of these is the /ResetSettings switch. When used
by itself, it resets Visual Studio to the default settings you initially chose during install. That’s
nice, but an even better option is available that can be particularly useful for people in other
scenarios.

Let’s take a classic example: You might have two (or more) monitors at work, but when you
get home, you work with just one monitor. Your window layouts (among other things) could
be very different in each place. In vstipEnv0040, “Export Your Window Layouts” (page 134),
I showed you how to export just your window layouts. Using the exported information, you
could create and use two different window layouts: one for work and one for home. This tip
shows you how to do this when using two different machines or the same machine at work
and home.

Two Different Machines
The question is: What do you do once you have exported the window layouts? Well, now you
put the .vssettings files where you can easily get to them on your machines and then you go
to the Properties dialog box of the Visual Studio program icon:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

40 01 .15 The ResetSettings Switch

Click the Shortcut tab:

In the Target area, type /ResetSettings [settings file], where [settings file] is the path to the
settings file for one of your layouts:

Now Visual Studio loads up with the settings appropriate for your machine.

Same Machine
What if you use the same machine for home and work, like a laptop? Just make two copies
of the Visual Studio program icon, put them somewhere (on your Desktop, most likely), and
give them names:

 Chapter 1 Getting Started 41

Now just follow the steps for the different machines for each icon, and you can use one icon
when you are at work to get the work window layouts and the other for home with the home
window layout.

 43

Chapter 2

Projects and Items

“He recalled his exertions and solicitations, and the history of his project […], which had
been accepted for consideration […]”

—Leo Tolstoy, “War and Peace”

After you get past your initial customization of Visual Studio, you will start creating projects
and items to get your work done. This section contains a group of resources that you will find
useful early on. Some will definitely be more useful to beginners (for example, searching tem-
plates), and others will apply to more advanced users (such as creating custom templates).

On the subject of custom templates, make sure you read though (and practice) how to create
them. Of all the topics in this chapter, I feel that creating custom project and item templates
will save you the greatest amount of time. That’s a pretty bold statement—but I have seen
properly set up templates save untold hours for developers.

02.01 Search for Project Templates in the New Project Dialog Box

DEFAulT Ctrl+Shift+N (new project dialog box); Ctrl+E (puts cursor in search box)

VISuAl BASIC 6 Ctrl+Shift+N (new project dialog box); Ctrl+N (new project); Ctrl+E (puts cursor in search box)

VISuAl C# 2005 Ctrl+Shift+N (new project dialog box); Ctrl+E (puts cursor in search box)

VISuAl C++ 2 Ctrl+Shift+N (new project dialog box); Ctrl+E (puts cursor in search box)

VISuAl C++ 6 Ctrl+Shift+N (new project dialog box); Ctrl+E (puts cursor in search box)

VISuAl STuDIO 6 Ctrl+N (new project dialog box); Ctrl+E (puts cursor in search box)

WInDOWS Alt,F, N, P (new project dialog box); Alt,F, D, N (add new project)

mEnu File | New Project; File | Add New Project

COmmAnD File .NewProject; File .AddNewProject

VERSIOnS 2010

CODE vstipProj0001

Did you know that you can search for templates in the New Project dialog box? Look in the
upper-right corner, and notice the new search area.

44 02 .01 Search for Project Templates in the New Project Dialog Box

Click there or press Ctrl+E, and type the word web into the search box. The following illustra-
tion shows what you should expect to see.

Good News
The search populates the middle pane with results from the recent, installed, or online lists,
depending on which category you select.

Bad News
The search doesn’t automatically filter the results according to your preferred language, and
it doesn’t support any advanced search options, such as Boolean searches, regular expres-
sions, and so on.

More Good News
In most cases, you can easily filter on your language by simply typing in an abbreviation of
your language (C#, VB, F#, or C++).

 Chapter 2 Projects and Items 45

02.02 Recent Project Templates in the New Project Dialog Box

DEFAulT Ctrl+Shift+N (new project dialog box)

VISuAl BASIC 6 Ctrl+Shift+N (new project dialog box); Ctrl+N (new project)

VISuAl C# 2005 Ctrl+Shift+N (new project dialog box)

VISuAl C++ 2 Ctrl+Shift+N (new project dialog box)

VISuAl C++ 6 Ctrl+Shift+N (new project dialog box)

VISuAl STuDIO 6 Ctrl+N (new project dialog box)

WInDOWS Alt,F, N, P (new project); Alt,F, D, N (add new project)

mEnu File | New Project; File | Add New Project

COmmAnD File .NewProject; File .AddNewProject

VERSIOnS 2010

CODE vstipProj0002

In the Visual Studio 2010 New Project dialog box, you can get a list of your five most recently
used templates. Just click Recent Templates to see a list of the templates you have used.

02.03 Using Older Frameworks with Multi-Targeting

DEFAulT Ctrl+Shift+N (new project dialog box)

VISuAl BASIC 6 Ctrl+Shift+N (new project dialog box); Ctrl+N (new project)

VISuAl C# 2005 Ctrl+Shift+N (new project dialog box)

VISuAl C++ 2 Ctrl+Shift+N (new project dialog box)

VISuAl C++ 6 Ctrl+Shift+N (new project dialog box)

VISuAl STuDIO 6 Ctrl+N (new project dialog box)

WInDOWS Alt,F, N, P (new project); Alt,F, D, N (add new project)

mEnu File | New Project; File | Add New Project

COmmAnD File .NewProject; File .AddNewProject

VERSIOnS 2008, 2010

CODE vstipProj0005

46 02 .04 Create Web Application or Virtual Directory in IIS

Even if you use an older version of the Microsoft .NET Framework, you can still use all the
great features in Visual Studio 2008 and Visual Studio 2010 through multi-targeting.

When you create a new project, locate the drop-down list of supported .NET Framework ver-
sions and simply choose the one you prefer. You get to use most of the great features in the
new IDE but still keep your older version of the .NET Framework. The following graphic shows
the New Project dialog box in Visual Studio 2010.

02.04 Create Web Application or Virtual Directory in IIS

DEFAulT Shift+Alt+N

VISuAl BASIC 6 Shift+Alt+N

VISuAl C# 2005 Shift+Alt+N

VISuAl C++ 2 Shift+Alt+N

VISuAl C++ 6 Shift+Alt+N

VISuAl STuDIO 6 Shift+Alt+N

WInDOWS Alt,F, N, W

mEnu File | New Web Site

COmmAnD File .NewWebSite

VERSIOnS 2008, 2010

CODE vstipEnv0058

How can you create Web Applications and Virtual Directories in Internet Information Server
from inside Visual Studio? Just select File | New Web Site, and click Browse in the lower-right
corner.

In the Choose Location dialog box, select Local IIS, and pick the website in which you want to
create the new item.

 Chapter 2 Projects and Items 47

In the upper-right corner of the dialog box, notice the three buttons, as shown in the follow-
ing illustration.

The button to the far left creates a new Web Application.

The middle button creates a new Virtual Directory.

You can pick whichever one you want to create, without ever leaving Visual Studio.

48 02 .05 Multiple Startup Projects

02.05 Multiple Startup Projects

DEFAulT Alt+Enter (in Solution Explorer)

VISuAl BASIC 6 Alt+Enter (in Solution Explorer)

VISuAl C# 2005 Alt+Enter (in Solution Explorer)

VISuAl C++ 2 Alt+Enter (in Solution Explorer)

VISuAl C++ 6 Alt+Enter (in Solution Explorer)

VISuAl STuDIO 6 Alt+Enter (in Solution Explorer)

WInDOWS Alt, P, P

mEnu Project | Properties [with Solution Selected in Solution Explorer];
[Right-Click the solution in Solution Explorer] | Properties

COmmAnD Project .Properties

VERSIOnS 2005, 2008, 2010

lAnGuAGES C#, VB

CODE vstipEnv0015

It’s common for developers to work with multiple projects. For example, consider a classic
Client/Server scenario: One project includes all the elements shown here:

In this case, setting a single Startup Project isn’t sufficient; you want both these projects to
start up when you press F5. Just click the solution in Solution Explorer, and then click the
Properties button (Alt+Enter) at the top.

Make sure you are in the Common Properties | Startup Project area, and you should see a
dialog box similar to the following.

 Chapter 2 Projects and Items 49

Notice that, currently, Single Startup Project is selected, but that isn’t what you need. Instead,
select Multiple Startup Projects.

Now you need to indicate which action each project should take when you press F5. Click the
drop-down in the Action field.

As shown in the preceding illustration, you see the following choices:

●● none
Don’t start this project.

●● Start
Start with debugging.

●● Start without debugging
Start without attaching the debugger.

For this example, you would choose Start for both projects.

50 02 .06 Change the Default New Project Location

Now both projects start when you press F5. But there’s just one little problem: The Client
project launches first, and you need the Server project to launch first. To set the launch order,
use the buttons to the far right of the project list, as shown in the following illustration.

These buttons move the selected project up or down in the list so that you can arrange them
to start in the order you would like. In this case, as shown in the following illustration, I’ve
selected the Server project and then clicked the Move button to move it up in the startup
order.

With the Server first in the list, you’re all set. When you press F5, you can see the server start
and then the client.

One interesting side effect of setting multiple startup projects is that the bold project name
you normally see in Solution Explorer isn’t there—because there is more than one startup
project.

02.06 Change the Default New Project Location

WInDOWS Alt,T, O

mEnu Tools | Options | Projects And Solutions | General

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipProj0006

You probably know that you can change the location for a new project in the New Project
dialog box by entering a different location in the Location field.

 Chapter 2 Projects and Items 51

But if you do this often, did you know that you can change the default location so that you
don’t have to keep typing in custom paths? To change the default, select Tools | Options |
Projects And Solutions | General from the menu bar. You’ll see an Options dialog box, shown
below, where you can change several default paths to suit your needs.

02.07 Track Active Item in Solution Explorer

WInDOWS Alt,T, O

mEnu Tools | Options | Projects and Solutions | General

COmmAnD View .TrackActivityinSolutionExplorer

VERSIOnS 2005, 2008, 2010

CODE vstipProj0011

52 02 .08 Type-Ahead Selection Support in Solution Explorer

By default, Visual Studio tracks the file you are currently editing in Solution Explorer. The
Solution Explorer tool window highlights the current file.

As you switch between files in the editor, notice that Solution Explorer automatically high-
lights the file you’re currently editing. This is a great way to keep track of where you are in
the solution when you are working with a lot of files.

If you don’t like the feature, you can turn it off. Just select Tools | Options | Projects And
Solutions | General, and clear the Track Active Item In Solution Explorer check box shown in
the following illustration.

02.08 Type-Ahead Selection Support in Solution Explorer

DEFAulT Ctrl+Alt+L

VISuAl BASIC 6 Ctrl+R; Ctrl+Alt+L

VISuAl C# 2005 Ctrl+W, S; Ctrl+W, Ctrl+S; Ctrl+Alt+L

VISuAl C++ 2 Alt+0; Ctrl+Alt+L

VISuAl C++ 6 Ctrl+Alt+L

VISuAl STuDIO 6 Ctrl+Alt+J

WInDOWS Alt,V, P

mEnu View | Solution Explorer

COmmAnD View .SolutionExplorer

VERSIOnS 2005, 2008, 2010

CODE vstipTool0010

Have you ever had a big list of files in Solution Explorer and wanted to jump to a specific file
very quickly? Just click anywhere in Solution Explorer, and start typing the name of the file
you want. For example, suppose you have a solution with multiple projects:

 Chapter 2 Projects and Items 53

Assume you need to find a file called SeriousCoolness. To find it, click in Solution Explorer
and then just start typing the name. Solution Explorer finds the file for you as you type.

What if you don’t know the whole name—just that it starts with an “S”? No worries! Just type
S several times, and the selection cycles though all the files that begin with that letter.

Note The type-ahead feature works only with items that have been expanded, so if you have
collapsed folders or projects in Solution Explorer, the tool cannot search within those areas.

54 02 .09 Using Solution Folders

02.09 Using Solution Folders

WInDOWS (with Solution selected) Alt,P, D

mEnu (with Solution selected) Project | Add New Solution Folder;
[Right-Click Solution] | Add | New Solution Folder

COmmAnD (with Solution selected) Project .AddNewSolutionFolder

VERSIOnS 2005, 2008, 2010

CODE vstipProj0009

Did you know that Visual Studio provides special folders that can help you organize large so-
lutions? They are called, appropriately enough, “Solution Folders.”

Note Solution Folders are an organizational tool in Solution Explorer; creating one doesn’t cre-
ate a corresponding Windows file system folder. Microsoft recommends that you organize your
projects on disk in the same way that you organize them in the Solution Folder. But of course,
you’re free to organize them as you like.

Adding Solution Folders
To create a Solution Folder, right-click your solution (or, with the solution selected, go to
Project | Add New Solution Folder). Solution Explorer adds a new folder, which you can type
a name for.

After you enter a name for the new folder, press Enter, and you’re done. So what can you ac-
tually do with these things? It turns out, quite a lot:

●● Move or add projects to them. Solution Folders can be nested to create greater organi-
zational structure.

●● Add, delete, or rename Solution Folders at any time, if the organizational requirements
of your solution change.

●● Unload all projects in a Solution Folder to make them temporarily unavailable for
building.

●● Collapse or hide entire Solution Folders so that you can work more easily in Solution
Explorer. Hidden projects are built when you build the solution.

●● Build or rebuild all the projects. The projects are built in the order specified by the proj-
ect dependencies.

 Chapter 2 Projects and Items 55

Removing Solution Folders
If you want to get rid of a folder, just right-click it and choose Remove to delete it, or alterna-
tively, select it and press the Delete key.

02.10 Navigating Property Tabs in the Project Properties

DEFAulT Ctrl+PgUp; Ctrl+PgDn

VISuAl BASIC 6 Ctrl+PgUp; Ctrl+PgDn

VISuAl C# 2005 Ctrl+PgUp; Ctrl+PgDn

VISuAl C++ 2 Ctrl+PgUp; Ctrl+PgDn

VISuAl C++ 6 Ctrl+PgUp; Ctrl+PgDn

VISuAl STuDIO 6 Ctrl+PgUp; Ctrl+PgDn

WInDOWS [no shortcut]

COmmAnD Window .PreviousTab; Window .NextTab

VERSIOnS 2005, 2008, 2010

CODE vstipProj0023

When you are looking at your project’s properties, you might have
wondered whether you can navigate among the property tabs by
using the keyboard.

It turns out that you can. Just use Ctrl+PgUp or Ctrl+PgDn to move be-
tween the property tabs. This also works for properties in C++ projects if
you want to quickly navigate among the categories.

02.11 Pin a Project to the Recent Projects List

VERSIOnS 2010

CODE vstipTool0003

56 02 .12 Creating Temporary Projects

Tired of your projects getting pushed out of the Recent Projects list on the Start Page? You
can pin projects to the Recent Projects list in Visual Studio 2010 so that they stay around until
you unpin them.

Pinned projects do not stay at the top of the list; instead, they’re sorted according to when
you use them. In other words, the most recent project is on top—pinned or not. Pinning
guarantees only that the project will not be pushed out of the list.

02.12 Creating Temporary Projects

WInDOWS Alt,T, O

mEnu Tools | Options | Projects and Solutions | General

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipProj0010

Temporary projects are particularly useful for showing a colleague some trick or technique
quickly, or for performing ad hoc demos. To create temporary projects, select Tools | Options
| Projects And Solutions | General and clear the Save New Projects When Created check box,
as shown in the following illustration.

While convenient, the option has some side effects. For example, when you subsequently
create a new project, the New Project dialog box does not show the usual “save” fields at the
bottom of the dialog box.

Before:

 Chapter 2 Projects and Items 57

After:

The good news is that now you can create projects all day long but can choose to either save
or discard the changes when the solution is closed.

Note You can still save changes to a project—even a temporary project—anytime you like if
you decide you want to keep the code around. When you decide to save, your AutoRecover set-
tings take over. For more information, see vstipEnv0019 (“Autorecover”, page 10).

02.13 Create Your Own Item Template

WInDOWS Alt,F, E

mEnu File | Export Template

COmmAnD File .ExportTemplate

VERSIOnS 2005, 2008, 2010

lAnGuAGES C#, VB

CODE vstipProj0013

Have you ever used or created a template in Microsoft Word, Excel, or PowerPoint? Unless
you live in a cave, the answer is most likely “yes.” Just as with the Microsoft Office products,
you can create and use your own templates in Visual Studio. This tip shows you how to make
your own item template. Sometimes you just want to customize an individual item that you
use frequently in projects. Class files are a perfect example of this type of scenario. Here’s an
example.

Create a new project, and then add a class to it (Ctrl+Shift+A).

Note The process is the same regardless of which language you’re using.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

58 02 .13 Create Your Own Item Template

Now modify the class code so that it looks the way you would like your item template to
look, and save your changes to the file.

At this point, you can export the item template so that you can use it in future projects.
Select File | Export Template to start the Export Template Wizard.

Note You are prompted to save changes to your project if you haven’t already done so.

Select Item Template, and select the project that currently contains the item you want to ex-
port (if you have more than one project in your solution).

 Chapter 2 Projects and Items 59

Click Next and then select the item to export as a template.

Note The wizard automatically selects any dependent files as needed based on your selection.
Also, even though it looks like you can select more than one item here, you can only select a
single item in this list.

Click Next again. Now you can select any references that you want included with the item. If
you have any Using or Imports statements, you need to pick the references here or the tem-
plate will not work correctly.

Note The wizard generates this list of assemblies from the assembly references in the current
project. If the assembly you want to reference does not appear in the list, exit the wizard and add
the reference to your project, and then run the wizard again.

60 02 .13 Create Your Own Item Template

Click Next. As you can see from the following illustration, you can add quite a bit of
information.

 Chapter 2 Projects and Items 61

Here’s a description of the information you can add:

●● Template name The friendly name for the template that Visual Studio displays in
the list of templates. I suggest keeping this to around 50–60 characters. Don’t get too
verbose here.

●● Template Description A short description that provides a little more detail about the
template’s purpose. In this text box, I want you to get very descriptive. This is your one
and only chance to make it perfectly clear what this template should be used for, so
don’t skimp on detail.

●● Icon Image A small image that represents the icon for the item. I suggest you just
leave this blank.

●● Preview Image A larger image that provides a preview of what the template looks
like. As with the Icon Image field, I suggest you leave this blank.

●● Output location The location where the wizard stores exported items. This is the
initial storage location of your templates. To be clear, they are not usable in Visual
Studio when they are just created. To make them useable in Visual Studio, you need to
check Automatically Import The Template Into Visual Studio. Leave this as-is unless you
are storing your templates on a network share somewhere. If you do change this value,
make sure you use the new location consistently when you create templates or you will
wind up forgetting where you put them.

●● Automatically Import The Template Into Visual Studio Lets you decide whether
you want to import the template right away or want to do it manually later. This “import”
is just a copy of the .zip file created in the appropriate location in My Documents\Visual
Studio <version>\Templates\ItemTemplates. By doing this, the template immediately
becomes usable in Visual Studio.

●● Display An Explorer Window On The Output Files Folder Opens up the location
where the template files are stored after they are created. This is useful when you want
to see the .zip file that is created. It’s interesting the first few times you do it, but then
it’s pretty much a waste of time. You will wind up turning off this option most of the
time.

The following illustration shows the settings I used for this example.

62 02 .13 Create Your Own Item Template

To complete the wizard, click Finish. The wizard closes and opens up the output file location,
showing the .zip file that contains the exported templates.

Although you aren’t interested in the details right now, if you explore inside the .zip file, you
can see the files that make up an item template.

 Chapter 2 Projects and Items 63

Finally, test your new template. Create a new item (Ctrl+Shift+A), and you should see the new
template. Notice the Icon Image next to the name of the item and the Preview Image (the
Visual Studio 2010 logo in the lower-right) that is below the description. I feel that the names
and descriptions are critical but really don’t see a lot of value in the icons.

You can also see the template in the My Documents\Visual Studio <version>\Templates\
ItemTemplates\ folder.

64 02 .14 Roll Your Own Project Template with the Export Template Wizard

If you aren’t happy with your new template, just delete the .zip file from this directory; it no
longer shows up in the Add New Item dialog box.

02.14 Roll Your Own Project Template with the Export Template Wizard

WInDOWS Alt,F, E

mEnu File | Export Template

COmmAnD File .ExportTemplate

VERSIOnS 2005, 2008, 2010

CODE vstipProj0004

Are you always adding the same extra files to projects when you create them? Ever wish you
could have it all just “be there”? Well, you can when you become familiar with the Export
Template Wizard.

First, set up an existing project template the way you want it. All changes (new files, code,
interfaces, and so on) will be used in the template you create. In this simple example, I always
want to include larry, curly, and moe C# class files with my console applications.

 Chapter 2 Projects and Items 65

Now select File | Export Template from the menu bar.

Note Choosing Export Template prompts you to save any pending changes if you haven’t already.

You’ll see the Export Template Wizard. From this first screen, you can choose to make either a
Project template or an Item template.

For this example, I selected Project Template and then clicked Next to continue to the Select
Template Options screen, shown in the following illustration.

66 02 .14 Roll Your Own Project Template with the Export Template Wizard

The following list provides a brief description of each option:

●● Template name The friendly name for the template that Visual Studio displays in
the list of templates. I suggest keeping this to around 50–60 characters. Don’t get too
verbose here.

●● Template Description A more complete explanation of how this template is intend-
ed to be used. This is your one and only opportunity for you to be very clear on the
proper usage for this template.

●● Icon Image and Preview Image The images used with the template name (icon im-
age) and just below the description (preview image). I suggest you don’t bother setting
these because they don’t have much use, in my opinion.

●● Output location The location where the wizard saves the .zip file that it creates. The
default value is usually what you will stick with unless you have, say, a network share
where you want your templates to stored.

●● Automatically Import The Template Into Visual Studio Controls whether the wiz-
ard puts a copy of the new template to your templates directory: My Documents\Visual
Studio <version>\Templates\ProjectTemplates. If you want the template to be available
the next time you create a new project, select this option. Most of the time you should
leave this option selected.

 Chapter 2 Projects and Items 67

●● Display An Explorer Window On The Output Files Folder Controls what happens
when you complete the wizard. When selected, it displays the folder containing the .zip
file that the wizard saves. After the first few times you create templates, this option can
get tiresome, so I usually turn it off. I suggest you leave it on the first few times you cre-
ate templates to see the template that is created.

After filling out the wizard and clicking Finish, the wizard closes and opens up my Exported
Templates (output) folder, where I can see the new .zip file containing the template files.

Now, when I create a new application, the new template appears, visible in the New Project
dialog box.

68 02 .15 Organizing Your Custom Item Templates

Obviously, this is a simple example; you can do a lot more with templates, and I suggest
you visit the “Export Template Wizard” documentation, at http://msdn.microsoft.com/en-us/
library/ms185318.aspx, for more detailed information about how to make good use of this
feature.

02.15 Organizing Your Custom Item Templates

VERSIOnS 2005, 2008, 2010

CODE vstipProj0020

In vstipProj0013 (“Roll Your Own Item Template with the Export Template Wizard”, page 57),
I showed you how to create custom item templates but didn’t show you how to organize
them.

Fortunately, organizing them is pretty easy. After you have created your template(s), navigate
to the folder My Documents\Visual Studio <version>\Templates\ItemTemplates. For example,
on my machine, the path is My Documents\Visual Studio 2010\Templates\ItemTemplates.

As you can see in the preceding illustration, I have a custom item—a class called “Really
Cool Regex Class.” Unfortunately, when I want to use it and I bring up the Add New Item
(Ctrl+Shift+A) dialog box, that class shows up in the root list.

I want it to show up in the Code area, but it doesn’t.

 Chapter 2 Projects and Items 69

To get the custom template to show up in the Code area, you need to go back to the
ItemTemplates directory and create a new folder named Code.

Then move the custom template into the Code folder.

Now whenever I press Ctrl+Shift+A to add a new item, my custom template appears in the
Code section.

70 02 .15 Organizing Your Custom Item Templates

In addition to working with existing folder names, you can create custom names as well. If,
for example, you wanted an XYZ Company folder for your templates you would just create
one and put your templates in there:

Now, when you go to add a new item, you will see your new folder in the dialog box:

 Chapter 2 Projects and Items 71

02.16 Organizing Your Custom Project Templates

VERSIOnS 2005, 2008, 2010

CODE vstipProj0019

In vstipProj0004 (“Roll Your Own Project Template with the Export Template Wizard”,
page 64), we discussed how to create custom project templates, but it doesn’t show you
how to organize them. Fortunately, that’s pretty easy. After you have created one or more
custom project templates, browse to My Documents\Visual Studio <version>\Templates\
ProjectTemplates. For example, on my machine, the full path is My Documents\Visual Studio
2010\Templates\ProjectTemplates.

As the preceding illustration shows, I created a custom Console application project type for
this example with the name ConsoleApplication1. By default, custom project templates don’t
show up in the project subfolders.

72 02 .16 Organizing Your Custom Project Templates

To get the custom templates to appear, the trick is to create a new folder in that directory
with a name that matches where you want the template(s) to show up. You place custom
templates in this new folder—and then they show up in the appropriate areas.

To do this, return to the My Documents\Visual Studio <version>\Templates\ProjectTemplates
directory and create a new folder called Windows—to match the Windows area in the New
Project dialog box, which is where we want the new Console template to appear.

Move your template into the new folder. For this example, I moved ConsoleApplication1.zip
into the Windows folder.

The next time you open up the New Project dialog box (Ctrl+Shift+N), it shows the project
template in the proper area.

 Chapter 2 Projects and Items 73

In addition to matching the existing folder names, you can create new ones. If you want a
custom area for your company templates, for example, you would just create a folder with
your company name and put at least one template in the folder:

The next time you bring up the New Project dialog box, it will show your new subfolder in
the list:

74 02 .17 Reorganize the Default Item Templates

02.17 Reorganize the Default Item Templates

VERSIOnS 2005, 2008, 2010

CODE vstipProj0021

Warning The procedures in this tip could cause your templates to disappear if you don’t fol-
low the instructions carefully. So do this at your own risk. You might want to back up your
ItemTemplates folder just to be safe.

You’ve probably noticed that General section of the New Item dialog box contains a large
number of items. If you want to organize those a bit more, this tip shows you how to create
custom areas in which you can store the default item templates that ship with Visual Studio.
This example creates a Diagram area for the diagram items that—by default—appear in the
General section.

 Chapter 2 Projects and Items 75

To get started, find where Visual Studio stores item templates on your machine.
Typically, this is in C:\Program Files\Microsoft Visual Studio <version>\Common7\IDE\
ItemTemplates\<language>. You might have to drill down into the file structure, depending
on what items you’re looking for, and the path might be slightly different on your machine,
based on your Visual Studio version. In this case, the actual full path on my machine is C:\
Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\ItemTemplates\CSharp.

When you’ve found the template location for your language, create a new folder. For this ex-
ample, I created a folder called Diagrams.

Now go into the General\1033 folder, and locate the diagram .zip files you want, as shown in
the following illustration.

76 02 .17 Reorganize the Default Item Templates

Now carefully move them to the new Diagrams folder.

Close all instances of Visual Studio, and then run the following command from the Visual
Studio command prompt (must be run with administrative privileges) :

devenv.com /installvstemplates

Warning Let this process complete without interfering. It is extremely important that you let
the process finish. The devenv.com command runs without any user interface. You know it is
done when another cursor shows up:

 Chapter 2 Projects and Items 77

When the process completes, open up Visual Studio, and then open any project. Bring up
the Add New Item dialog box (Ctrl+Shift+A). Notice your brand new Diagrams area, with the
templates you moved there inside it.

02.18 Reorganize the Default Project Templates

VERSIOnS 2005, 2008, 2010

CODE vstipProj0018

Warning The procedures in this tip could cause some of your templates to disappear unless
you follow the instructions carefully. So do this at your own risk. You might want to back up your
ProjectTemplates folder just to be safe.

Maybe it’s just me, but I get really annoyed that, for example, my WCF project templates
are in a WCF section when I go to create a new project—but my WPF projects are under
“Windows.” That just doesn’t seem intuitive. So this example shows you how you can create
custom areas for the default project templates that ship with Visual Studio. In this example,
you create a WPF area for your WPF project templates.

You need to find the location where your version of Visual Studio stores project templates.
Typically, that’s in C:\Program Files\Microsoft Visual Studio <version>\Common7\IDE\
ProjectTemplates\<language>. You might need to explore the file system to find the tem-
plates, and your path might be slightly different, based on which Visual Studio version you’re
running. For example, the actual full path on my machine for C# templates is C:\Program
Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\ProjectTemplates\CSharp.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

78 02 .18 Reorganize the Default Project Templates

Now create a new folder, and name it “WPF.”

These next steps are potentially dangerous, so be careful. Navigate to the Windows folder
(actually Windows\1033\), and locate the WPF templates.

 Chapter 2 Projects and Items 79

Move these .zip files into the new folder you just created.

Close all instances of Visual Studio, and then run the following command from the Visual
Studio command prompt, which you can find on your Start menu:

devenv.com /installvstemplates

Warning It is very important that you let this process finish without interruption. The devenv.
com command runs without any user interface. You know it is done when the command prompt
shows up again:

When the process completes, open up Visual Studio, and open the New Project dialog box
(Ctrl+Shift+N) to see your brand-new WPF area containing the WPF templates, as shown in
the following illustration.

80 02 .19 Change the Templates that Appear in the New Project or Item Dialog Boxes

Note While researching how to do this, I experimented with copying the templates instead of
moving them. However, Visual Studio apparently detects duplicate template names and doesn’t
allow you to have multiple copies in different locations. So I wound up with an empty WPF sec-
tion; the templates stayed in their original Windows section. I suspect this is dependent on load
order—and my tests indicate Visual Studio loads the known default directories first, so having a
folder called “Abacus” to beat the sort order doesn’t work.

02.19 Change the Templates that Appear in the New Project or
Item Dialog Boxes

VERSIOnS 2008, 2010

CODE vstipProj0017

Warning: Manipulating templates as discussed here can cause serious problems if you don’t
know what you are doing. Use this information at your own risk. You should consider backing up
your ProjectTemplates or ItemTemplates folders.

With all the great changes to the New Project and New Item dialog boxes, you might be
perfectly happy with the list of things that Visual Studio presents by default. But for argu-
ment’s sake, suppose you want to get rid of some of the entries. This example removes the
C# Windows Forms Control Library from the New Project dialog box (Ctrl+Shift+N), but you
can follow the same steps to remove or change items in the New Item dialog box.

 Chapter 2 Projects and Items 81

Navigate to the location where your version of Visual Studio stores templates for your select-
ed language. Typically, that’s C:\Program Files\Microsoft Visual Studio <version>\Common7\
IDE\<Project or Item>Templates\<language>\<project category>. You might have to explore
a little; your path might be slightly different, based on which Visual Studio version you’re run-
ning. On my machine, the path to the Windows Forms Control Library .zip file is C:\Program
Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\ProjectTemplates\CSharp\Windows.

You don’t want to simply delete the file—you might need it in the future. Instead, just move
the .zip file to another directory. That way, you can always retrieve it from that location if you
need it again.

82 02 .19 Change the Templates that Appear in the New Project orItem Dialog Boxes

Close all instances of Visual Studio, and then run the following command from the Visual
Studio command prompt, which you can find on your Start menu:

devenv.com /installvstemplates

Warning It is very important that you let this process finish without interruption. The devenv.
com command runs without any user interface. You know it is done when the cursor shows up
again:

After the process completes, start Visual Studio again, and then create a new project
(Ctrl+Shift+N). You should see that the moved template is no longer in the list.

 83

Chapter 3

Getting to Know the Environment

“A mobile robot has to devote a tremendous amount of processing time simply to avoid
obstacles in the environment. Human beings do, too, but they’re never aware of it—until
the lights go out. Then they learn painfully just how much processing is really required.”

—Michael Crichton, “Prey”

Too often we take our environment for granted—the little things that we see every day
and, yet, fail to notice. This section is meant to awaken you to the possibilities in your Visual
Studio environment.

Most notably, the purpose is to highlight how best to work with your window layouts, how to
use the toolbox to your advantage, and how to work with commands properly, among other
things. Take time to really explore the Visual Studio environment, and you can unlock the se-
crets to navigating that same environment successfully.

03.01 Rearrange Windows in Visual Studio 2010 Using the Guide Diamond

DEFAulT [no shortcut]

VISuAl BASIC 6 [no shortcut]

VISuAl C# 2005 [no shortcut]

VISuAl C++ 2 Alt+F6 (dock)

VISuAl C++ 6 [no shortcut]

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt,W, F (Float); Alt,W, K (Dock); Alt,W, T (Dock as Tabbed Document)

mEnu Window | Float; Window | Dock; Window | Dock as Tabbed Document

COmmAnD Window .Float; Window .Dock; Window .DockasTabbedDocument

VERSIOnS 2010

CODE vstipTool0008

Docking and undocking windows in the IDE has always been interesting. In Visual Studio, we
have a tool called the Guide Diamond that is used to assist our efforts. The following illustra-
tion shows the Guide Diamond in Visual Studio 2008.

84 03 .01 Rearrange Windows in Visual Studio 2010 Using the Guide Diamond

Unfortunately, this doesn’t really provide good visual cues to help determine the final posi-
tion of a window. Visual Studio 2010 provides a new and improved Guide Diamond that
makes docking much easier, as shown in the following illustration.

Now you can clearly see how your docked window will look based on the image in the dia-
mond. Just drag the title bar of your window over one of the previews in the Guide Diamond.

When the preview matches where you want your window to go, just release the mouse and
the window docks at that location.

 Chapter 3 Getting to Know the Environment 85

03.02 Dock a Floating Tool Window Back to Its Previous Location

DEFAulT [no shortcut]

VISuAl BASIC 6 [no shortcut]

VISuAl C# 2005 [no shortcut]

VISuAl C++ 2 Alt+F6

VISuAl C++ 6 [no shortcut]

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt,W, K

mEnu Window | Dock

COmmAnD Window .Dock

VERSIOnS 2005, 2008, 2010

CODE vstipTool0036

You can easily dock a floating tool window back to its previous docked location.

Just right-click the Title Bar, and choose Dock, as shown in the following illustration.

86 03 .03 Cycle Through Your Open Tool Windows

Note In Visual Studio 2008, you can also double-click the title bar to dock the window back to
its previous location.

In Visual Studio 2005, to place a tool window back to its previous docking location without using
the docking guides, you must double-click the title bar. Additionally, the title bar menu is slightly
different for 2005. The word “Dockable” is used in place of the word “Dock.”

03.03 Cycle Through Your Open Tool Windows

DEFAulT Alt+F6 (next); Alt+Shift+F6 (previous)

VISuAl BASIC 6 Alt+F6 (next); Alt+Shift+F6 (previous)

VISuAl C# 2005 Alt+F6 (next); Alt+Shift+F6 (previous)

VISuAl C++ 2 F6 (next); Shift+F6 (previous)

VISuAl C++ 6 Alt+F6 (next); Alt+Shift+F6 (previous)

VISuAl STuDIO 6 Alt+F6 (next); Alt+Shift+F6 (previous)

WInDOWS [no shortcut]

COmmAnD Window .NextPane; Window .PreviousPane

VERSIOnS 2005, 2008, 2010

CODE vstipTool0038

In vstipTool0023, “Using the IDE Navigator,” page 160, you saw how to get around among
your open tool windows. Here’s how to get around among your open tool windows without
using the IDE Navigator.

Press Alt+F6 (next) or Alt+Shift+F6 (previous) to begin going through your open tool win-
dows. It’s important to understand what the word “open” means in this context. An “open”
tool window is one whose tab appears in the IDE. For example, suppose you have the follow-
ing view:

The Error List, Command Window, and Breakpoints are “open” tool windows—even though
the tool windows are hidden. This is an important distinction as you use this tip, because it
explains why you cycle through all the open tool windows—whether or not they are hidden.

 Chapter 3 Getting to Know the Environment 87

03.04 Closing Tool Windows

DEFAulT Shift+Esc

VISuAl BASIC 6 Shift+Esc

VISuAl C# 2005 Shift+Esc

VISuAl C++ 2 Shift+Esc

VISuAl C++ 6 Shift+Esc

VISuAl STuDIO 6 Shift+Esc

WInDOWS [no shortcut]

COmmAnD Window .CloseToolWindow

VERSIOnS 2005, 2008, 2010

CODE vstipTool0039

Eventually, after using your tool windows, you will want to close one or more of them. You
can always do this by clicking the Close button (the “X” in the upper-right corner).

Using the keyboard, you can simply press Shift+Esc to close the current tool window.

03.05 Expand and Collapse All in the Toolbox

WInDOWS * (expand all); / (collapse all)

VERSIOnS 2005, 2008, 2010

CODE vstipTool0050

You can quickly expand the entire Toolbox by pressing the asterisk (*) when the Toolbox is
active.

You can also collapse the entire Toolbox by pressing the forward slash (/) when the Toolbox
is active.

88 03 .06 Searching in the Toolbox

03.06 Searching in the Toolbox

DEFAulT Ctrl+Alt+X (view toolbox)

VISuAl BASIC 6 Ctrl+Alt+X (view toolbox)

VISuAl C# 2005 Ctrl+Alt+X (view toolbox); Ctrl+W, X (view toolbox); Ctrl+W, Ctrl+X (view toolbox)

VISuAl C++ 2 Ctrl+Alt+X (view toolbox)

VISuAl C++ 6 Ctrl+Alt+X (view toolbox)

VISuAl STuDIO 6 Ctrl+Alt+X (view toolbox)

WInDOWS Alt,V, X (view toolbox); TAB (next result); ESC (cancel)

mEnu View | Toolbox

COmmAnD View .Toolbox

VERSIOnS 2010

CODE vstipTool0114

This tip provides a much-requested and much-anticipated feature: searching the Toolbox.

Simply switch focus to the Toolbox (Ctrl+Alt+X), as shown in the following illustration.

 Chapter 3 Getting to Know the Environment 89

Now start typing the name of the control you are looking for. In the following example, I’m
looking for the TextBox control by typing tex:

The letters you are typing appear in the Status Bar, and you are even provided instructions
either for looking for the next item or for cancelling the search.

Press Tab to go the next result, or press Esc to cancel. Also, you can actively use the
Backspace key to delete letters from the search when you want to quickly retype new
characters.

03.07 Navigate Among Tabs in the Toolbox

KEyBOARD Ctrl+[Up, Down] Arrow

VERSIOnS 2005, 2008, 2010

CODE vstipTool0051

You can jump between tabs in the Toolbox.

Just press Ctrl+[Up, Down] Arrow to navigate. When you use Ctrl+Down Arrow, it expands
the next tab and jumps to the first item in that group, as shown in the following illustration.

90 03 .08 Window Layouts: The Four Modes

When you press Ctrl+Up Arrow it jumps to the last item in the previous control group:

03.08 Window Layouts: The Four Modes

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0051

Ever wonder why the windows seem to shift around when you go from Design to Debug
Mode? The answer is simple: window layouts.

You might have seen them if you have ever tried to export your window layouts. You can find
it under General Settings | Window Layouts, as shown in the following illustration.

The four window layout modes in Visual Studio are as follows.

Design View
This view is the one you see when you start up Visual Studio. It’s what most people refer to as
the “normal” view.

 Chapter 3 Getting to Know the Environment 91

Debugging View
This is the view that you get when you enter Debug Mode as you are stepping through your
code.

Full Screen
This is the view that you get when you go to View | Full Screen (Shift+Alt+Enter).

File View
This is the lesser-known view that you can get when you open up a file via devenv.exe
[filename].

The thing to remember here is that your tool windows and your command bar customiza-
tions are saved separately for each state. There is no way to tell Visual Studio to use one
state for all modes at this time. Additionally, when you shut down Visual Studio in any state,
all four states are saved.

03.09 Window Layouts: Design, Debug, and Full Screen

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0052

In vstipEnv0051, “Window Layouts: The Four Modes,” page 90, I discussed the four layout
modes in Visual Studio. I thought it would be instructive to demonstrate the three most com-
mon modes together here.

As we discuss these modes, keep in mind that each has its own layout that can be customized
to your needs. For example, you might clearly need some windows in Design Mode (for ex-
ample, the Pending Changes window) that perhaps aren’t necessary in Debug Mode.

Design Mode
This is the mode you see when you first start up Visual Studio. It is one of the two most com-
mon modes you will find yourself in. The following illustration shows a view of my Design
Window Layout for a website.

92 03 .09 Window Layouts: Design, Debug, and Full Screen

Debug Mode
When I enter Debug Mode, the second most common mode, I see my Debug Window
Layout, as shown in the following console application.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 3 Getting to Know the Environment 93

Full Screen Mode
I addressed this mode in vstipEnv0024, “Full Screen Mode,” in Appendix B (http://go.microsoft.com/
FWLink/?Linkid=223758). You can get here by pressing Shift+Alt+Enter. An example of what it
looks like is shown in the following illustration.

03.10 Working with Tabs in the Toolbox

WInDOWS Shift+F10, A (with the Toolbox selected)

mEnu [Right-click the Toolbox] | Add Tab

COmmAnD Tools .AddTab

VERSIOnS 2005, 2008, 2010

CODE vstipTool0054

The Toolbox is a pretty cool place, and one of its best features is the ability to organize items
by using tabs.

Creating Tabs
To create a custom tab, right-click inside the Toolbox and choose Add Tab, as shown in the
following illustration.

94 03 .10 Working with Tabs in the Toolbox

Just type in a name for your new tab, and press Enter.

Adding Items
You can add items to your custom tab as you see fit. For example, to add controls to this new
tab from existing tabs, just pick the control you want and copy it.

Then go to your customized tab, and paste inside it to get a copy of that control for your use.

You can also click and drag items onto new tabs.

 Chapter 3 Getting to Know the Environment 95

Custom Controls
Of course, if you want custom controls, you can always right-click in the custom tab and se-
lect Choose Items, as shown in the following illustration.

Renaming Tabs
If you don’t like a tab name, you can always rename it:

Deleting Tabs
Also notice the option to delete the tab, shown in the preceding illustration. If you choose
this option, the following dialog box appears. When you click OK in this dialog box, you lose
the tab as well as all the items on it.

96 03 .11 Using Additional Browsers for Web Development

This action is just an organizational mechanism and doesn’t permanently delete any controls
from your system, so you can add them as needed to any future tabs.

03.11 Using Additional Browsers for Web Development

WInDOWS Alt,F, H (with file selected in Solution Explorer)

mEnu File | Browse With (with file selected in Solution Explorer)

COmmAnD File .BrowseWith (with file selected in Solution Explorer)

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0057

When you are doing web development in Visual Studio, you might want to use a different
default browser than you are currently using. You can do this by using the Browse With dia-
log box.

Getting to this dialog box is a little interesting because it is context sensitive. It is best to have
either your web project or a webpage selected in Solution Explorer to see the Browse With
option on the File Menu or when you right-click:

The Browse With dialog box appears as shown in the following illustration.

 Chapter 3 Getting to Know the Environment 97

Adding New Browsers
Visual Studio automatically detects some browsers. For example, I installed Firefox and the
preceding dialog box automatically detected it. However, if you don’t see your browser in the
Browse With dialog box, you can click Add, enter the path to the executable in the Program
Name field, and enter a friendly name for your browser in the Friendly Name field, as shown
in the following illustration.

Changing the Default Browser
You can also change the default browser by choosing a browser in the list and then clicking
Set As Default:

98 03 .11 Using Additional Browsers for Web Development

Browser Window Size
Choose the window size you want for your browser by using the Size Of Browser Window
drop-down list:

Removing Browsers
Eventually, you might want to get rid of some of your browser choices. Simply select the
browser in the list, and click Remove:

 Chapter 3 Getting to Know the Environment 99

03.12 Auto-Hide All Tool Windows

WInDOWS Alt,W, U

mEnu Window | Auto Hide All

COmmAnD Window .AutoHideAll

VERSIOnS 2005, 2008, 2010

CODE vstipTool0034

Warning While this is a great tip, there is no way to “un-auto-hide” all tool windows, so you
have to bring your tool windows back individually.

So let’s say you have a crowded space with lots of tool windows open, as shown in the fol-
lowing illustration.

You can make all the tool windows go away quickly—just go to Window | Auto Hide All:

100 03 .13 Showing Hidden Tool Windows with the Auto Hide Channel

All the tool windows are automatically hidden.

03.13 Showing Hidden Tool Windows with the Auto Hide Channel

VERSIOnS 2005, 2008, 2010

CODE vstipTool0037

You can use a special place called the Auto Hide Channel to see what tool windows are hid-
den. Just go to any area that has hidden tool windows, and then right-click the bar where the
tabs are to see a list of the hidden tool windows.

 Chapter 3 Getting to Know the Environment 101

The best part is that this works on the bottom channel.

And it works on the channel to the left as well.

For best results, click in the empty space in the channel, beyond any tabs, as shown in the fol-
lowing illustration.

And, of course, to show any hidden window, just select it from the list.

102 03 .14 Moving Tool Windows Around with Your Keyboard

03.14 Moving Tool Windows Around with Your Keyboard

DEFAulT Alt+- (dock menu)

VISuAl BASIC 6 [no shortcut]

VISuAl C# 2005 Alt+- (dock menu)

VISuAl C++ 2 Alt+- (dock menu)

VISuAl C++ 6 Alt+- (dock menu)

VISuAl STuDIO 6 Alt+- (dock menu)

WInDOWS Alt,Space (floating tool windows)

mEnu Window | [Float, Dock, etc .] (dock menu)

COmmAnD Window .ShowDockMenu

VERSIOnS 2010

CODE vstipTool0041

Note The minus sign (-) used in the keyboard shortcut is from the top row of numeric keys on
your keyboard, not the minus sign on the numeric keypad.

With the rewrite of the IDE for Visual Studio 2010, you’ll find some changes in how you con-
trol the tool windows. When an active tool window is docked, you can use Alt+minus (-) to
bring up the Dock menu and then use your arrow keys to pick an item from the menu.

This works for floating tool windows as well.

But active floating tool windows have a System menu that you can access only by pressing
Alt+Space.

 Chapter 3 Getting to Know the Environment 103

These commands should be familiar to just about everyone, and they give you full control
over moving, resizing, and other window manipulations.

03.15 Keyboard Access to a Tool Window’s Toolbar

WInDOWS Shift+Alt; Tab

VERSIOnS 2005, 2008, 2010

CODE vstipTool0042

Sometimes, when you have an active tool window, you just want access to the toolbar in the
window without having to reach over and use your mouse.

A little-known fact is that you can do this very easily for any active tool window by pressing
Shift+Alt for some or by pressing Tab for others. For example, to get access to the Solution
Explorer Toolbar, just press Shift+Alt.

In the Properties Tool Window, you would use press the Tab key to gain access to the toolbar.

Now you can use your arrow keys to move between toolbar items, and use the Enter key to
“press” the button you choose.

104 03 .16 Command Prompt History

03.16 Command Prompt History

WInDOWS F7 (history window); [Up / Down] Arrow (history)

CODE vstipTool0055

Many people like to use the command prompt; I thought we might explore one of the oldest
features around: command history.

Note The following examples will not work unless you have typed some commands into the
Command Window already, so type a few commands and then clear the screen by typing cls and
pressing Enter.

There are two main ways to get commands you’ve typed in previously. First, you can just
press the Up Arrow key to start going through your history at the prompt itself.

The advantage here is that you can quickly edit the command to change it if needed.
However, if you just want to run a command from your history, you can use a very old trick
by pressing F7.

Pressing F7 runs the command you selected from the list by using your Up or Down Arrow
keys.

 Chapter 3 Getting to Know the Environment 105

03.17 Command Prompt Tab Completion

WInDOWS Tab

CODE vstipTool0056

When using the Visual Studio command prompt (or any command prompt), you have several
ways to use tab completion.

Simple Search
You can type the first letter of a file, as shown in the following illustration.

Then press Tab one or more times to see all the files that begin with that letter.

Wildcard Search
Not as well-known is the ability to use wildcards to match characters. You can use an aster-
isk (*) to represent any number of characters and a question mark (?) to represent a single
character.

So if you want to find a file name that has the letter “a” anywhere in it, you would use *a* as
shown in the following illustration.

Then press Tab to get the first result.

106 03 .17 Command Prompt Tab Completion

Press Tab several times, and notice that each file name listed contains the letter “a” some-
where in it.

What about a two-letter file that begins with a “c” but can have any other character and any
extension? Use c?.* and press Tab.

Press Tab again.

This feature extends to any commands you want to use as well. You can type something like
edit *a*, as shown in the following illustration.

Then press Tab to see the following result:

If I keep pressing tab, it continues to cycle through all file names that contain an “a”.

 Chapter 3 Getting to Know the Environment 107

Finally
As you can see, tab completion is a very useful and powerful feature with the command
prompt. You definitely want this skill in your tool belt.

03.18 Undock and Dock a Single Tool Window in a Group

DEFAulT [no shortcut]

VISuAl BASIC 6 [no shortcut]

VISuAl C# 2005 [no shortcut]

VISuAl C++ 2 Alt+F6 (dock)

VISuAl C++ 6 [no shortcut]

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt,–, F (float, VS2010 Only); Alt,–, K (dock, VS2010 Only); Alt, W, F (float); Alt, W, K (dock)

mEnu Window | Float; Window | Dock

COmmAnD Window .Float; Window .Dock

VERSIOnS 2005, 2008, 2010

CODE vstipTool0099

Docking and undocking tool windows is a common activity. In this tip, we look at the differ-
ent techniques you can use to accomplish these tasks.

Undock
You have multiple ways to undock a single tool window in a group.

Click and drag
With the mouse, you can click and drag the tab out of the group.

Menu
With the tool window active, you can select Window | Float from the menu bar, as shown in
the following illustration.

108 03 .18 Undock and Dock a Single Tool Window in a Group

Control box (Visual Studio 2010 only)
Press Alt+minus (–) to get the tool window menu.

Then press “F” to make the tool window float.

Result
Whichever method you use, the result is the same: You wind up with an undocked tool
window.

Dock
To dock a floating tool window back into a group (assuming it came from a group), you also
have multiple options.

Click and drag
By far, the hardest option is to click and drag the tool window back into the group. The best
way to do this is to drag the tool window title bar over the title bar of another tool window in
the group you want it to join, as shown in the following illustration.

 Chapter 3 Getting to Know the Environment 109

Notice how the target shading looks like a tab being put onto the existing group? That is
what you look for when doing it this way. Of course, I would do it this way only if I were tak-
ing a tab from one group to another, not if I were returning a floating tool window back to
its original group.

Menu
The menu option is pretty easy: Just go to Window | Dock, as shown in the following
illustration.

Control box (Visual Studio 2010 only)
And then there is the Control menu. Press Alt+minus (–) to get the menu.

Then press “K” to make the tool window dock back to its original location.

Result
You can use any of these methods to put the tool window back into the group it came from,
with the notable exception of the click and drag method, which can be used to put the tool
window anywhere.

110 03 .19 Understanding Commands: Simple Commands

03.19 Understanding Commands: Simple Commands

VERSIOnS 2005, 2008, 2010

CODE vstipTool0067

Just about everything you do in Visual Studio comes with an associated command. But what
exactly is a command?

According to the MSDN documentation (http://msdn.microsoft.com/en-us/library/kcc7tke7.
aspx), commands “allow direct interaction with the integrated development environment
(IDE) from the keyboard. Dialog boxes, windows, and other items within the IDE have a com-
mand equivalent that you can type into the Command window or Find/Command box to
display and, in some cases, execute the item.”

In plain English, commands allow you to perform actions in Visual Studio. Let’s take adding a
class as an example.

First, let’s examine the typical way you add a class. Normally, you would just go to Project |
Add Class.

Obviously, this command is used to add a new class to your project and shows the Add New
Item dialog box.

http://msdn.microsoft.com/en-us/library/kcc7tke7(VS.71).aspx
http://msdn.microsoft.com/en-us/library/kcc7tke7(VS.71).aspx

 Chapter 3 Getting to Know the Environment 111

That’s too much extra work for something I like to use all the time. I want to search and see
whether a specific command is associated with this action. To do this, I’ll use what most peo-
ple refer to as the “command well,” because it is a deep “well” of commands. It’s where all the
commands that you can use are located. To get there, go to Tools | Options | Environment |
Keyboard, as shown in the following illustration

Note For this example, I’m using the General keyboard settings, so your settings might have a
shortcut key assigned already. You can still follow this tip to create a new shortcut.

I’ll type a keyword in the Show Commands Containing area to narrow down the command
list. In this case, the keywords Add Class are used in the menu item, so I will use them here. In
the following illustration, you can see how I have removed the spaces for the command.

Notice that among the available commands is the Project.AddClass command. It’s common
to find a command that follows the menu structure, and this one is no exception.

112 03 .19 Understanding Commands: Simple Commands

Also notice that no shortcuts are associated with the command. We can now add one. For
this example, let’s use Ctrl+M, Ctrl+7 as the shortcut key to be assigned.

For now, I won’t get into the nuances of assigning shortcut keys, but you can get the details
at vstipTool0063, “Keyboard Shortcuts: Creating New Shortcuts,” page 127. Assuming the key
was assigned correctly, you can click OK and then press Ctrl+M, Ctrl+7 to see the Add New
Item dialog box pop up, as shown in the following illustration.

Now you understand the power of commands. They can be quite useful, and after you assign
a shortcut key, you can see it in the menu as well (if applicable).

 Chapter 3 Getting to Know the Environment 113

03.20 Understanding Commands: Aliases

DEFAulT Ctrl+Alt+A

VISuAl BASIC 6 Ctrl+Alt+A

VISuAl C# 2005 Ctrl+Alt+A; Ctrl+W, A; Ctrl+W, Ctrl+A

VISuAl C++ 2 Ctrl+Alt+A

VISuAl C++ 6 Ctrl+Alt+A

VISuAl STuDIO 6 Ctrl+Alt+A

WInDOWS Alt,V, E, C

mEnu View | Other Windows | Command Window

COmmAnD View .CommandWindow

VERSIOnS 2005, 2008, 2010

CODE vstipTool0068

It is sometimes cumbersome to type in a full command. You can use aliases to quickly use a
command without having to type in the full command syntax. If you want a list of the current
aliases, just open the Command Window (Ctrl+Alt+A) and type alias.

114 03 .20 Understanding Commands: Aliases

By the way, you can clear the Command Window out at any time by typing cls, just in case
you get a lot of clutter in the window.

Let’s take a simple alias as an example. How about the “Debug.ToggleBreakpoint” command?
Notice in the preceding list that the alias is “bp”. Let’s find a line of code.

Now we can go to the Command Window and type bp, as shown in the following illustration.

It puts a breakpoint on the line.

Create a New Alias
In addition to the aliases that are already there, you can create new ones. Let’s create one for
the Project.AddClass command. Simply type alias [alias to use] [command]. In our case,
let’s put in alias ac Project.AddClass, as shown in the following illustration.

Anytime we want to add a class, we can type the command alias ac and get the Add New
Item dialog box.

Viewing Assigned Aliases
To show what command an alias is assigned to, just type alias [alias]. So, in this case, I would
put in alias ac to see what command “ac” is bound to.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 3 Getting to Know the Environment 115

Delete an Alias
To get rid of an alias, type alias [alias] /d[elete]. To get rid of the alias we just made, we
would type alias ac /d.

You can confirm the alias is gone by typing alias ac. You should see the result shown in the
following illustration.

03.21 Understanding Commands: Arguments and Switches

DEFAulT Ctrl+Alt+A

VISuAl BASIC 6 Ctrl+Alt+A

VISuAl C# 2005 Ctrl+Alt+A; Ctrl+W, A; Ctrl+W, Ctrl+A

VISuAl C++ 2 Ctrl+Alt+A

VISuAl C++ 6 Ctrl+Alt+A

VISuAl STuDIO 6 Ctrl+Alt+A

WInDOWS Alt,V, E, C

mEnu View | Other Windows | Command Window

COmmAnD View .CommandWindow

VERSIOnS 2005, 2008, 2010

CODE vstipTool0069

Some commands take arguments and switches so that you can quickly execute them without
having to deal with user interface elements. You can get a list of commands that take argu-
ments by going to the MSDN Documentation article entitled “Visual Studio Commands with
Arguments,” at http://msdn.microsoft.com/en-us/library/c338aexd.aspx.

116 03 .21 Understanding Commands: Arguments and Switches

The best way to learn is by doing, so let’s use the Edit.Find command. If you want to know
more about what Find can do, take a look at vstipFind0007, “Using Quick Find,” on page 172.

Basic Use
First, open up the Command Window (Ctrl+Alt+A) and run the command without any argu-
ments, as shown in the following illustration.

The preceding command opens the Find And Replace dialog box, shown in the following
illustration.

Arguments and Switches
According to the “Find Command” documentation at http://msdn.microsoft.com/en-us/
library/295dhke9.aspx, the Edit.Find command takes one argument and 12 possible switches.
The general syntax for the command is as follows:

Edit.Find findwhat [/case] [/doc | /proc | /open | /sel] [/markall] [/options] [/reset] [/
up] [/wild | /regex] [/word]

I’ll resist the urge to copy and paste from the documentation here and just focus on the
items we are going to use.

Argument
●● findwhat—Required. The text to match.

 Chapter 3 Getting to Know the Environment 117

Switches
●● /doc or /d—Optional. Searches the current document only. You can use only one of

the available search scopes: /doc, /proc (procedure), /open (all open documents), or /sel
(current selection).

●● /markall or /m—Optional. Places a [bookmark] on each line that contains a search
match within the current document.

●● /wild or /l—Optional. Uses predefined special characters in the findwhat argument as
notations to represent a character or sequence of characters.

List Current Options
You can list out the current options that are set for the Edit.Find command by typing Edit.Find
/options, as shown in the following illustration.

Reset Options
You can reset the options to the default values by typing Edit.Find /reset.

Using the Arguments and Switches
Let’s put this command to the test. We want to bypass the Quick Find dialog box and just
find things. We will use the following command:

Edit.Find *c* /wild /doc /markall

This command finds any line in the current document (/doc) that has the letter “c” anywhere
in it, using wildcards (/wild) and placing a bookmark (/markall) on each line.

The following illustration shows the code we are going to use before we run the command.

118 03 .21 Understanding Commands: Arguments and Switches

We run our command.

The result is shown in the following illustration.

And now we have a working command that bypasses the Quick Find dialog box and just
finds things.

Make an Alias
What if we want to use this all the time? We can make an alias out of the command. In this
case, we type alias findc Edit.Find *c* /wild /doc /markall, as shown in the following
illustration.

 Chapter 3 Getting to Know the Environment 119

More information on aliases can be found in vstipTool0068 (“Understanding Commands:
Aliases,” page 113). You can double-check the alias assignment by typing alias findc.

From now on, you just type findc in the Command Window, and it performs the predefined
search.

03.22 Testing a Command

DEFAulT Ctrl+Alt+A

VISuAl BASIC 6 Ctrl+Alt+A

VISuAl C# 2005 Ctrl+Alt+A; Ctrl+W, A; Ctrl+W, Ctrl+A

VISuAl C++ 2 Ctrl+Alt+A

VISuAl C++ 6 Ctrl+Alt+A

VISuAl STuDIO 6 Ctrl+Alt+A

WInDOWS Alt,V, E, C

mEnu View | Other Windows | Command Window

COmmAnD View .CommandWindow

VERSIOnS 2005, 2008, 2010

CODE vstipTool0065

Throughout these tips, I include the command when available. But you might be wondering
how to test a command to see how it works. Let’s take a look at one quick way.

First, figure out what command you want to test. In our case, let’s test “View.ViewCode”.

Press Ctrl+Alt+A to bring up the Command Window.

120 03 .22 Testing a Command

Because we’re testing “ViewCode”, we have a Design window open so that it can switch to
the code. Now start typing the command we want to test (case doesn’t matter).

As you can see in the preceding illustration, we have IntelliSense helping us with the com-
mand. Now we just press Enter to see the command in action.

Now you have tested a command. Feel free to try various commands to see what they do,
but make sure to set up the context as we did in this example to ensure that the command
works properly. Some commands can’t be run from the Command Window and might re-
quire that you assign a shortcut key or use the Find Combo box.

Refer to vstipTool0070 (“Understanding Commands: Running Commands,” on the next page)
for more information.

 Chapter 3 Getting to Know the Environment 121

03.23 Understanding Commands: Running Commands

DEFAulT Ctrl+Alt+A (command window); Ctrl+Alt+I (immediate window); Ctrl+/ (find combo box with
command symbol)

VISuAl BASIC 6 Ctrl+Alt+A (command window); Ctrl+Alt+I; Ctrl+G (immediate window); (no shortcut for find
combo box)

VISuAl C# 2005 Ctrl+Alt+A; Ctrl+W, A; Ctrl+W, Ctrl+A (command window)
Ctrl+Alt+I; Ctrl+D, I; Ctrl+D, Ctrl+I (immediate window)
Ctrl+/ (find combo box)

VISuAl C++ 2 Ctrl+Alt+A (command window); Ctrl+Alt+I (immediate window); Ctrl+/ (find combo box with
command symbol)

VISuAl C++ 6 Ctrl+Alt+A (command window); Ctrl+Alt+I (immediate window); Ctrl+/ (find combo box with
command symbol)

VISuAl STuDIO 6 Ctrl+Alt+A (command window); Ctrl+Alt+I (immediate window); Ctrl+/ (find combo box with
command symbol)

WInDOWS Alt,V, E, C

mEnu View | Other Windows | Command Window; Debug | Windows | Immediate Window

COmmAnD View .CommandWindow; Debug .Immediate; Edit .GoToFindCombo; Tools .GoToCommandLine

VERSIOnS 2005, 2008, 2010

CODE vstipTool0070

Whenever you work with commands, you have four main ways you can run them. For exam-
ple, not all commands will run from the Command Window, so it is a good idea to familiarize
yourself with the other options. Let’s take a look at each way.

Shortcuts
The easiest way to run a command is when a shortcut is attached to it. For example, View.
Code has a couple of shortcut keys attached to it.

Note For more information about shortcut keys, see vstipTool0061 (“Find Keyboard Shortcuts,”
on the next page).

122 03 .24 Find Keyboard Shortcuts

Command Window
The Command Window (Ctrl+Alt+A) is specifically designed to run commands. Just type in
the command, and press Enter.

Immediate Window
You can run many commands from the Immediate Window (Ctrl+Alt+I) by typing a greater-
than sign (>). Then type any command and press Enter.

Find Combo Box
A little-known feature enables you to run commands from the Find Combo Box (Ctrl+D) on
the standard toolbar. Just type a greater-than sign (>), then type any command, and press
Enter.

For most language settings, you can bypass the typing of the greater-than sign by using
Ctrl+Forward Slash (/), which takes you to the Find Combo Box and automatically inserts the
sign for you.

03.24 Find Keyboard Shortcuts

WInDOWS Alt,T, O

mEnu Tools | Options | Environment | Keyboard

COmmAnD Tools .CustomizeKeyboard

VERSIOnS 2005, 2008, 2010

CODE vstipTool0061

Ever just want to see the keyboard shortcuts available in Visual Studio? Let’s say, for example,
that you want to see if View | Code has any keyboard shortcuts. A quick look at the menu
doesn’t reveal anything.

 Chapter 3 Getting to Know the Environment 123

But that’s not the end of the story. If we go to Tools | Options | Environment | Keyboard, we
get the following dialog box.

Pretty much everything you do in Visual Studio has a command that runs to execute that
action. In our case, we know that View | Code is the path to the command we want, so let’s
start by trying to see whether we have a “View.Code” command. Notice that commands use
dot notation between items:

Sadly, what we want isn’t there. OK, so either it isn’t there or it’s called something else. We
still know it’s off the View menu, so let’s type in View. and browse to see whether anything
pops up.

124 03 .24 Find Keyboard Shortcuts

If we scroll down far enough, we actually find an entry for “View.ViewCode”. If we look under
Shortcuts For Selected Command, we see a couple of shortcut entries, as shown in the fol-
lowing illustration.

It looks like pressing F7 in the Designer does the trick, so let’s try it.

Go to the Designer and press F7.

As we can see in the preceding illustration, we have discovered the shortcut key for viewing
code in the Designer.

 Chapter 3 Getting to Know the Environment 125

There is also another entry for the Class Diagram that uses Enter to show us code. Let’s open
up a Class Diagram and select a class.

Then press Enter.

It takes us to the code as well. So now you know how to find shortcut keys (if they exist) for a
command.

03.25 Keyboard Shortcuts: Additional Mapping Schemes

WInDOWS Alt,T, O

mEnu Tools | Options | Environment | Keyboard

COmmAnD Tools .CustomizeKeyboard

VERSIOnS 2005, 2008, 2010

CODE vstipTool0062

One of the most important places you can go in Visual Studio is the Tools | Options |
Environment | Keyboard area, shown in the following illustration.

126 03 .25 Keyboard Shortcuts: Additional Mapping Schemes

In vstipTool0061, “Find Keyboard Shortcuts,” page 122, we looked at how to find shortcut
keys for given commands. Now let’s focus on the Apply The Following Additional Keyboard
Mapping Scheme drop-down list.

This list allows you to apply additional keyboard shortcuts that were common in certain pre-
vious versions.

Let’s take an example. If we have the default mapping scheme and want to see the shortcuts
for View.ViewCode, we see the options presented in the following illustration.

 Chapter 3 Getting to Know the Environment 127

However, if we add an additional mapping scheme (Visual C++ 6 in this example), this gets
the following result:

Notice that we have a new shortcut that wasn’t there before. This is how adding additional
mapping schemes work. If you don’t want these additional keys, just set Apply The Following
Additional Keyboard Mapping Scheme to Default (or General, if it is available in the list).

03.26 Keyboard Shortcuts: Creating New Shortcuts

WInDOWS Alt,T, O

mEnu Tools | Options | Environment | Keyboard

COmmAnD Tools .CustomizeKeyboard

VERSIOnS 2005, 2008, 2010

CODE vstipTool0063

Creating keyboard shortcuts is easy. Let’s walk through an example to show you how. First,
go to Tools | Options | Environment | Keyboard.

128 03 .26 Keyboard Shortcuts: Creating New Shortcuts

Now let’s assume we want to modify the “View.ViewCode” command to include a new short-
cut. Notice the existing shortcuts (assuming no additional keyboard mapping schemes).

We want to add Ctrl+Z as the shortcut, so click in the Press Shortcut Keys area and press
Ctrl+Z.

There is a problem. Looking down at the Shortcut Currently Used By area, we see that Ctrl+Z
is already mapped to the Edit.Undo command. Because that is an important key combination
to us, let’s try a new set of shortcut keys. How about Ctrl+Alt+4? Just use backspace to get rid
of the current entry, and press Ctrl+Alt+4.

 Chapter 3 Getting to Know the Environment 129

Perfect. It isn’t being used by anything currently—but we aren’t done yet. We have to decide
what scope we want this shortcut to be available in. Notice the drop-down to the left of the
new shortcut under Use New Shortcut In? The default scope is global, so you can use it at any
time. However, you can narrow the scope down to a specific area.

For example, if we wanted to have this shortcut available only when we’re editing XML, we
would change Global to XML (Text) Editor. For now, let’s keep the Global setting.

After we’ve decided on the scope and the shortcut keys, all we have to do is click Assign, as
shown in the preceding illustration, to make the shortcut available.

If you mess up here, you can choose the shortcut key and click Remove to start over.

Warning You can remove any shortcut, so be careful to remove only the shortcuts you actually
want to eliminate.

 Click OK, and let’s go test our new shortcut. Go to Design View in any project.

130 03 .26 Keyboard Shortcuts: Creating New Shortcuts

Press Ctrl+Alt+4 to see the following result:

It should take you to the code. You now know how to map new keyboard shortcuts.

Reset
If you make a mistake with your shortcut keys, you can always click the Reset button in Tools |
Options | Environment | Keyboard.

 Chapter 3 Getting to Know the Environment 131

Don’t take this option lightly. Refer to vstipTool0064 (“Keyboard Shortcuts Reset All Your
Shortcuts,” page 131).

03.27 Keyboard Shortcuts: Reset All Your Shortcuts

WInDOWS Alt,T, O

mEnu Tools | Options | Environment | Keyboard

COmmAnD Tools .CustomizeKeyboard

VERSIOnS 2005, 2008, 2010

CODE vstipTool0064

On rare occasions, you might lose track of all the custom shortcuts you have made, or maybe
you just want to reset all your shortcuts back to their default settings. You can reset all your
keyboard shortcuts by clicking the Reset button in Tools | Options | Environment | Keyboard.

When you click this button, you get the following warning message:

Note Take this warning seriously! It resets all keyboard mappings to their default values if you
click Yes, so you should use this only if you are sure of the consequences.

The following before-and-after illustrations show what happens after you click Yes in the pre-
ceding Warning message.

132 03 .28 Understanding Commands: Logging Commands

Before:

After:

03.28 Understanding Commands: Logging Commands

COmmAnD log; Tools .LogCommandWindowOutput

VERSIOnS 2005, 2008, 2010

CODE vstipTool0071

When using commands, sometimes you want to keep a log of the ones you used. This is es-
pecially useful when you are experimenting with commands to see what iterations you went
through. The syntax for logging is as follows:

log [filename] [/on|/off] [/overwrite]

Or you can use the following:

Tools.LogCommandWindowOutput [filename] [/on|/off] [/overwrite]

 Chapter 3 Getting to Know the Environment 133

Arguments
The following sections describe what the preceding arguments do.

Filename
It’s highly recommended that you use a path and file name; otherwise, the default file name
is cmdline.log and the log file is stored at C:\Users\<user>\AppData\Roaming\Microsoft\
VisualStudio\<version>.

/on /off
This argument turns logging on or off.

/overwrite
By default, all logging operations append to your log file. The /overwrite switch changes this
behavior and erases any previous commands from the log when a new log session starts.

Example
First, type the “log” command in the Command Window (Ctrl+Alt+A) and specify a file
name by typing log C:\users\<user>\Documents\vslog.txt /on, as shown in the following
illustration.

Now type in a couple of commands. The specific commands don’t matter here, so feel free to
substitute your own commands instead of using mine if you like. I used the commands View.
ViewCode to get a code window, and I used Edit.Find sys to find some text.

134 03 .29 Export Your Window Layouts

At this point, you’re done typing comments. Turn logging off by using the log /off
command.

Now browse to the My Documents folder to see the file.

If you open the file, you should see something similar to the following:

As you can see, the file contains a running log of the commands you entered, including the
last command to turn logging off.

03.29 Export Your Window Layouts

WInDOWS Alt,T, I

mEnu Tools | Import and Export Settings

COmmAnD Tools .ImportandExportSettings

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0040

After you get your tool and document windows just the way you want them inside Visual
Studio, you want to be able to get those settings back if anything goes wrong.

You can export just your window layouts by going to Tools | Import And Export Settings and
choosing Export Selected Environment Settings, and then click Next.

 Chapter 3 Getting to Know the Environment 135

Now clear the All Settings check box.

Go to General Settings, select Window Layouts, and then click Next.

Give the .vssettings file a name and a location to be saved into, click Finish, and then click
Close.

You now can import these settings (see vstipEnv0022, “Importing or Changing Your
Environment Settings,” in Appendix B [http://go.microsoft.com/FWLink/?Linkid=223758]) when-
ever you want to get your preferred layouts.

136 03 .30 Stop the Toolbox from Auto-Populating from the Solution

03.30 Stop the Toolbox from Auto-Populating from the Solution

WInDOWS Alt,T, O

mEnu Tools | Options | Windows Forms Designer

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipTool0090

If you find that the Toolbox is taking a long time scanning a solution with a lot of projects in
it, you can keep it from doing this.

Just go to Tools | Options | Windows Forms Designer, and set AutoToolboxPopulate to False.

To display custom items when AutoToolboxPopulate is set to False, you can select Choose
Items from the Toolbox context menu and add the items manually to the Toolbox.

People often set this to False accidentally. If you find your controls are not automatically
showing up in the Toolbox, setting this to True might solve the problem.

03.31 Using External Tools

WInDOWS Alt,T, E

mEnu Tools | External Tools; Tools | [external tool of choice]

COmmAnD Tools .ExternalTools

VERSIOnS 2005, 2008, 2010

CODE vstipTool0059

You can run external tools by going to the Tools menu and running your external tool of
choice, as shown in the following illustration.

 Chapter 3 Getting to Know the Environment 137

If you want to add additional external tools, you can go to Tools | External Tools.

As an example, let’s add the Visual Studio command prompt to our external tools list. First,
click Add and put in a Title of Visual Studio Command Prompt.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

138 03 .31 Using External Tools

In this case, the Visual Studio command prompt has an icon that we can use to get the infor-
mation we need. Let’s go to its properties.

After you click Properties, you see the following dialog box.

As you can see, the Target field points to %comspec%, with some arguments after it. The
variable %comspec% points to the command prompt on the current Windows system and
can be used on just about any version of Windows. Let’s put that into the Command field for
our purposes.

 Chapter 3 Getting to Know the Environment 139

If you weren’t using a system variable like this, you could type in the path to the command or
use the ellipsis and browse.

For the Arguments field, again, let’s just take from the Visual Studio command prompt prop-
erties and enter the path shown in the following illustration.

If you want to add items specific to Visual Studio, you can click the arrow to the right and
get a large list of variables you can insert as arguments.

The Initial Directory lets you define where you want to start up. I don’t have a preference
here, so I will leave it blank, but I could type in a path or use one of the variables available to
me by clicking on the arrow to the right of the Initial Directory field.

140 03 .31 Using External Tools

Finally, you can choose from several options at the bottom.

Use Output Window
Selecting this option runs the command and puts any output into the Output window. This
is useful for commands that just return some data you want to look at. For our command
prompt, this wouldn’t be a good choice because we want to type in commands.

Treat Output As Unicode
If your tool returns Unicode output, you would select this check box.

Prompt For Arguments
This option shows a dialog box that enables you to modify the arguments before the com-
mand is run or to put in completely new arguments.

Close On Exit
Selecting this option determines whether the window should close when the tool closes. In
the case of our command prompt, with this option checked when we type exit and press
Enter, the window closes. However, if this option is not checked and we do the same thing,
we get the result shown in the following illustration.

 Chapter 3 Getting to Know the Environment 141

When you are all done, just click OK, and you now have your command showing up in the
external tools list off the Tools menu.

03.32 Create Keyboard Accelerators for External Tools

WInDOWS Alt,T, E

mEnu Tools | External Tools

COmmAnD Tools .ExternalTools

VERSIOnS 2005, 2008, 2010

CODE vstipTool0093

In vstipTool0059 (“Using External Tools,” page 136), I showed you how to add external tools
to the Visual Studio Tools menu).

142 03 .32 Create Keyboard Accelerators for External Tools

After you create an entry, you probably want to have an accelerator key assigned so that you
can use your keyboard to activate the new tool. First, you can see what these keys look like
by going to the Tools menu, using your keyboard (Alt+T).

Now you can press any letter that is underlined to access that item. For example, if the letter
“G” if pressed, it opens up the Create GUID tool. You can see how this is created by going to
Tools | External Tools on the menu bar.

Notice the ampersand (&) before the “G” in “GUID”? Anytime you put an ampersand before
any character in your title, the next character after it becomes the accelerator key. As you can
see, all these entries have accelerator keys assigned to them. Now you can create special keys
for your external tools access.

 Chapter 3 Getting to Know the Environment 143

03.33 Exporting Your Command Window Aliases and External Tools List

WInDOWS Alt,T, I

mEnu Tools | Import and Export Settings

COmmAnD Tools .ImportandExportSettings

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0043

As you probably know, you can export just about any setting you want. Usually, you export
several settings together. However, when it comes time to import settings, the following two
settings do not get imported by default: Command Window Aliases and External Tools List:

Sometimes, when importing, users just click through the wizard and forget this is the case.
For this reason, it might be a good idea to make sure that you have these two settings ex-
ported separately as an extra copy. Then you can just import these settings as needed.

To do this, just go to Tools | Import And Export Settings and select Export Selected
Environment Settings:

Click Next, clear the All Settings check box, and then select the Command Window Aliases
and External Tools List check boxes:

144 03 .34 Creating and Using a Macro

From here, just complete the wizard normally and make sure to give your exported file a
logical name, such as Command Aliases and External Tools List.

03.34 Creating and Using a Macro

DEFAulT Ctrl+Shift+R (record/stop recording); Ctrl+Shift+P (run)

VISuAl BASIC 6 [no shortcut] (record/stop recording); [no shortcut] (run)

VISuAl C# 2005 Ctrl+Shift+R (record/stop recording); Ctrl+Shift+P (run)

VISuAl C++ 2 Ctrl+Shift+R (record/stop recording); Ctrl+Shift+P (run)

VISuAl C++ 6 Ctrl+Shift+R (record/stop recording); Ctrl+Shift+P (run)

VISuAl STuDIO 6 [no shortcut] (record/stop recording)

WInDOWS Alt,T, M, C (record / stop recording); Alt,T, M, R (run)

mEnu Tools | Macros | Record Temporary Macro; Tools | Macros | Run Temporary Macro;
Tools | Macros | Save Temporary Macro

COmmAnD Tools .RecordTemporaryMacro; Tools .RunTemporaryMacro; Tools .SaveTemporaryMacro

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0055

You can record macros to do just about anything in Visual Studio. In this example, we create
a macro that adds a new class to our project. First, create a new project. For this example,
create a Console Application:

Now we are going to add a class to the project and give the class a name. When we do this,
we will record the actions into a temporary macro by pressing Ctrl+Shift+R. You should see
the following status in the lower-left corner:

 Chapter 3 Getting to Know the Environment 145

Add a new class (Ctrl+Shift+A) called Bubba.cs:

Warning You can run into numerous little “gotchas” when creating macros. One that took me a
little while to figure out was leaving off the “.cs” at the end of the file name. For some reason,
Visual Studio doesn’t like that at all. Keep an eye out for little things like that as you use this feature.

Add a comment to the class:

Stop recording (Ctrl+Shift+R), and then go to Tools | Macros | Save Temporary Macro. Name
the macro makeBubba in the Macro Explorer:

146 03 .34 Creating and Using a Macro

Now we can test out our new macro by creating a new project and going to the Macro
Explorer (Alt+F8). Right-click the MakeBubba macro, and choose Run:

It should make the new class and put your comment in:

After you have created your macro, you might want to see the code behind it. You can go
to the Macro Explorer (Alt+F8), right-click any macro, and then choose Edit to see the code.
Here is what my code (cleaned up a bit) looks like for the macro we just made:

Notice that it is fairly easy to read and understand, which makes it easy to edit as well. Now
that you have a working macro, you should visit vstipTool0066 (“Create a Shortcut Key for a
Macro,” in Appendix B [http://go.microsoft.com/FWLink/?Linkid=223758]) and create a shortcut
key for it.

 Chapter 3 Getting to Know the Environment 147

03.35 Visual Studio Image Library

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0049

As a developer, you are always looking for images that can be used in your applications.
Visual Studio comes with a set of images to help you out. In fact, it comes with over 2000
output files, images ready for immediate use, as well as a variety of source files that you can
use to create your own images if needed. These images come from Microsoft Windows, the
Office system, Microsoft Visual Studio, and other Microsoft software.

You can find them in a .zip file located at “C:\Program Files\Microsoft Visual Studio <ver-
sion>\Common7\VS<version>ImageLibrary\1033.” For example, I found my images at “C:\
Program Files (x86)\Microsoft Visual Studio 10.0\Common7\VS2010ImageLibrary\1033”:

Types of Files
The Visual Studio Image Library folders contain source files and output files.

Source files
Source files contain building blocks intended for use with an image editor to generate new or
to customize existing icons.

Output files
Typically, output files are composite images made up of a base concept with 1–3 adorners,
ready for immediate use by developers.

148 03 .35 Visual Studio Image Library

Image Library Contents
The following illustration provides an idea of what is included in the Visual Studio Image
Library and what each group of images is used for:

_Common Elements
Have you ever tried to edit an existing image that is made up of several overlapping ele-
ments? Then you know how hard it is to make simple changes in an output file. In this
section, each source file is made up of various sizes of each element on a transparent back-
ground. When used with an image editor that utilizes layers, such as Adobe Photoshop or
Paint.NET, you can choose the size of an element that fits best with what you’re trying to do
and then make adjustments by layering the pieces, moving them around without editing the
bits that are in the lower layers.

 Chapter 3 Getting to Know the Environment 149

When the final image is composed just the way you like it, you can then flatten and save the
file in a usable format such as .ico, .bmp, or .png. A typical use of source files would be to
take an existing image and add an adorner from the _Common Elements source files, such as
adding a “new” star to the upper left to indicate a command that creates a new item of that
base type:

Actions
The Actions folder set contains output file images that represent verbs. Most commands are
verbs, so if you are building a toolbar or ribbon, you would find most of those images in the
Actions folder. In the Visual Studio Image Library, the Actions images are separated by for-
mat (24-bit, 32-bit, .ico, and .png), size (16x16, 24x24, 32x32), and style (Office/Visual Studio,
DataTools, Windows Vista, and Windows XP).

150 03 .35 Visual Studio Image Library

Use the format that works best within your code; 24-bit .bmp files use a fuchsia color that
you can map to the background color of your user interface so that it appears to have a
transparent background; 32-bit .bmp files contain a transparent background, although in File
Explorer it appears black, and .ico and .png files have transparent backgrounds as well. Also,
each style is illustrated differently, so generally, you should choose one style and stay consis-
tent, not mixing different styles in the same user interface.

Animations
This folder contains a few of the common animations that you see in Windows and that are
used in dialog boxes or other user interface elements to indicate that a process is underway.
You have .avi and .gif formats available for most of the animations; which format you use will
be determined by which format is best supported by the technology you’re using for your
user interface.

Annotations_Buttons
The Annotations_Buttons folder contains images for notifications, simple actions such as
expand/collapse, or to describe the state of an object or process—for example, running,
paused, or offline. This group of files is also separated out by format (24-bit .bmp, .ico, and
.png) as well as style. Notice that the Windows Vista .ico annotations contain the full range of
sizes that can be viewed in the File Explorer and appear correctly in accordance with the size
required by your user interface.

 Chapter 3 Getting to Know the Environment 151

Objects
Objects are output image files representing nouns. Because they represent objects, the most
common usage for these files is in tree views, list views, or containers such as toolboxes.
When used in this way, these images enable the user to scan a list of elements and to identify
types of objects without needing to read the name of the item. Sometimes objects can also
represent commands, such as a command to create a new object of that type (New File) or to
launch a user interface element related to that object (for example, a stopwatch image used
to indicate Start Timer).

In the png_format Windows Vista folder, you can find a wide variety of sizes and colors of
various flags, arrows, +/- signs, and so forth, which can be used to indicate a variety of mean-
ings. Generally, Object images are used as base elements when creating a new compound
icon. Base elements augmented by annotations or other actions/object images can indicate
the state or type of the base image and form a visual language when used with variations of
similar icons:

Using the Images
The images are meant to be used for their original intent. So, for example, you can’t use
the Paste image for something other than a paste operation. When you are using or creat-
ing these images, it is important that you make sure to use the images in a manner that is
consistent with the description of the respective image in the readme document found in its
respective folder:

 153

Chapter 4

Working with Documents

“He turned off the word processor, realizing just a second after he’d flicked the switch that
he’d forgotten to save the document. Well, that was all right. Maybe it had even been the
critic in his subconscious, telling him the document wasn’t worth saving.”

—Stephen King, “Secret Window, Secret Garden” in “Four Past Midnight”

Documents serve as the cornerstone of your activities in Visual Studio. Writing code, debug-
ging code, creating interfaces, or just about anything else you do is done with documents.
Yet we still seem to take our documents for granted. This chapter focuses on working with
documents in the File Tab Channel as well as ways to navigate better. Several advanced top-
ics, such as creating custom file extensions and working with previous versions are covered as
well.

04.01 Insert Documents to the Right of Existing Tabs

WInDOWS Alt,T, O

mEnu Tools | Options | Environment | Documents

VERSIOnS 2010

CODE vstipEnv0001

By default, Visual Studio 2010 opens up new tabs to the left of existing ones, as shown in the
following illustration.

You now have an option to put newly opened documents in the file channel to the right of
existing tabs.

Just go to Tools | Options | Environment | Documents, and select the Insert Documents To
The Right Of Existing Tabs option.

You should see new tabs show up to the right of existing tabs.

154 04 .02 Recent Files

04.02 Recent Files

WInDOWS Alt,W, [1,2,3, etc] (windows);
Alt,F, F, [1,2,3, etc] (files);
Alt,F, J, [1,2,3, etc] (projects and solutions)

mEnu Tools | Options | General | Recent files;
Window | [1,2,3, etc]; File | Recent Files | [1,2,3, etc];
File | Recent Projects and Solutions | [1,2,3, etc]

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0013

By default, the Window menu shows the
10 most recent files you had open, as
shown in the illustration to the right.

Likewise, the Recent Files and Recent
Projects And Solutions items on the File
menu show only the last 20 entries.

You can easily modify these numbers (up or down) by going to Tools | Options | General |
Recent files.

 Chapter 4 Working with Documents 155

For each of these options, the minimum value is 1 and the maximum value is 24. Experiment
with numbers that suit your taste.

04.03 Working with Documents on Multiple Monitors

WInDOWS Alt,W, F (float); Alt,W,T (dock)

mEnu Window | Float; Window | Dock as Tabbed Document

COmmAnD Window .Float; Window .DockasTabbedDocument

VERSIOnS 2010

CODE vstipTool0004

This is one we have all been wanting for a long time: detachable document windows. You
can now detach document windows and put them on another monitor! You have a couple of
ways to do this.

156 04 .03 Working with Documents on Multiple Monitors

The first way is to simply click and drag the tab for the document window out of the IDE.

The second way is to go to Window | Float on the menu bar, as shown in the following
illustration.

What if you want to put the window back? No worries; just right-click the title bar of the
document and choose Dock As Tabbed Document.

If you want an alternative method, you can go the following route: Click and drag the docu-
ment window by its title bar into the IDE.

The guide diamond appears in the IDE, as shown in the following illustration.

Hold down the left mouse button, and move your cursor over the middle item in the guide
diamond. You should see an outline of where the window will be docked.

 Chapter 4 Working with Documents 157

Release the mouse button, and it should dock where you want it to go.

04.04 Navigate Open Document Windows

DEFAulT Ctrl+F6 (next);
Ctrl+Shift+F6 (previous)

VISuAl C++ 2 Ctrl+F6; Ctrl+Tab (next)
Ctrl+Shift+F6; Ctrl+Shift+Tab (previous)

VISuAl STuDIO 6 Ctrl+F6; Ctrl+Tab (next)
Ctrl+Shift+F6; Ctrl+Shift+Tab (previous)

COmmAnD Window .NextDocumentWindow; Window .PreviousDocumentWindow

VERSIOnS 2005, 2008, 2010

CODE vstipTool0013

OK, so you have a lot of files open in the file channel:

And you don’t want to use your mouse to switch between tabs. Just press Ctrl+F6 to go
forward.

Or press Ctrl+Shift+F6 to go backward.

158 04 .05 Close the Current Document Window

04.05 Close the Current Document Window

DEFAulT Ctrl+F4

VISuAl BASIC 6 Ctrl+F4

VISuAl C# 2005 Ctrl+F4

VISuAl C++ 2 Ctrl+F4

VISuAl C++ 6 Ctrl+F4

VISuAl STuDIO 6 Ctrl+F4

WInDOWS Alt,F, C

mEnu File | Close

COmmAnD Window .CloseDocumentWindow; File .Close

VERSIOnS 2005, 2008, 2010

CODE vstipTool0014

You can close the current document window from the keyboard. Just make sure you are in
the document you want to close.

Then press Ctrl+F4. The current document closes, and it prompts you to save changes if you
haven’t already.

04.06 Open a File Location from the File Tab

DEFAulT Alt+- (minus sign), O (VS2010 Only)

VISuAl BASIC 6 [no shortcut]

WInDOWS Alt+- (minus sign), O (VS2010 Only)

COmmAnD File .OpenContainingFolder; Window .ShowDockMenu

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0014

Do you often find yourself needing to go to your project location in Windows Explorer? Just
right-click the file’s tab, and choose Open Containing Folder.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 4 Working with Documents 159

The file location opens in Windows Explorer, and you can manipulate the files from there.

04.07 Open the File Menu Drop-Down List from Your Keyboard

DEFAulT Ctrl+Alt+Down Arrow

VISuAl BASIC 6 Ctrl+Alt+Down Arrow

VISuAl C# 2005 Ctrl+Alt+Down Arrow

VISuAl C++ 2 Ctrl+Alt+Down Arrow

VISuAl C++ 6 Ctrl+Alt+Down Arrow

VISuAl STuDIO 6 Ctrl+Alt+Down Arrow

WInDOWS [no shortcut]

COmmAnD Window .ShowEzMDIFileList

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0003

When you have a lot of files open, it is sometimes easier to view them as a list instead of tabs.
The File menu drop-down list does that for you. You can click the drop-down button to the
far right on the file tab, or you can simply use Ctrl+Alt+Down Arrow to activate it.

An interesting thing about this list is that it has type-ahead functionality. So, in this example,
if you type the letter S, it automatically selects SomethingToDo.cs. Hitting S again results in
Start Page being selected. If you have a lot of files, you can type more characters to narrow
down the selection. For example, typing ST jumps straight to Start Page.

160 04 .08 Using the IDE Navigator

04.08 Using the IDE Navigator

DEFAulT Ctrl+Tab (forward in Active Files);
Ctrl+Shift+Tab (backward in Active Files);
Alt+F7 (forward in Active Tool Windows);
Alt+Shift+F7 (backward in Active Tool Windows)

VISuAl BASIC 6 [no shortcuts]

VISuAl C# 2005 Ctrl+Tab (forward in Active Files);
Ctrl+Shift+Tab (backward in Active Files);
Alt+F7 (forward in Active Tool Windows);
Alt+Shift+F7 (backward in Active Tool Windows)

VISuAl C++ 2 [no shortcuts]

VISuAl C++ 6 Ctrl+Tab (forward in Active Files);
Ctrl+Shift+Tab (backward in Active Files);
Alt+F7 (forward in Active Tool Windows);
Alt+Shift+F7 (backward in Active Tool Windows)

VISuAl STuDIO 6 Ctrl+Tab (forward in Active Files);
Ctrl+Shift+Tab (backward in Active Files);
Alt+F7 (forward in Active Tool Windows);
Alt+Shift+F7 (backward in Active Tool Windows)

WInDOWS [no shortcuts]

COmmAnD Window .NextDocumentWindowNav;
Window .PreviousDocumentWindowNav;
Window .NextToolWindowNav;
Window .PreviousToolWindowNav

VERSIOnS 2005, 2008, 2010

CODE vstipTool0023

Navigating documents and tool windows in the IDE is a critical part of your development ex-
perience. You can easily move among active file and tool windows by pressing Ctrl+Tab.

 Chapter 4 Working with Documents 161

Note The images in this tip show the IDE Navigator with document preview (image to the right
of the lists). This feature is off by default in Visual Studio 2010, but can be turned on as shown in
vstipTool0113, “Thumbnail Previews in the IDE Navigator”, in Appendix B (http://go.microsoft.com/
FWLink/?Linkid=223758).

Some interesting things come with using this feature. For example, holding down the Ctrl key
keeps the IDE Navigator showing once it is up. Also, you can select any item in this dialog
box, while it is showing, by using your mouse or arrow keys.

Navigator Areas
Let’s take a look at the two major areas in the navigator: Active Files and Active Tool
Windows.

Active files
To navigate active files, press Ctrl+Tab to go forward and Ctrl+Shift+Tab to go backward
though the list. The currently selected file is highlighted, and its name is displayed at the
top of the dialog box. Also, notice that the full file path is shown at the bottom of the IDE
navigator.

Active tool windows
This part of the dialog box shows all your tool windows that are currently open. To get to this
area, you can use Alt+F7 or Alt+Shift+F7. The interesting part is that this list changes depend-
ing on when you use it. The following illustration shows what mine looks like while I am writing
code.

162 04 .08 Using the IDE Navigator

And here’s what it looks like when I’m debugging:

 Chapter 4 Working with Documents 163

04.09 Multiple Views of the Same Document

WInDOWS Alt,W, N

mEnu Window | New Window

COmmAnD Window .NewWindow

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0016

Sometimes you might want to look at a particularly large document in several different areas
at the same time. For example, you might want to look at the same document on multiple
monitors. This tip shows you how to make this happen.

Special Note for VB Users in Visual Studio 2010
This feature is turned off by default in VB. A lot of history and reasoning is behind this, but
the long and short of it is that this was fixed for 2010 but time ran out and it wasn’t tested.
So you can turn this on for VB, but you do so at your own risk. Special thanks to my friend
Dustin Campbell for supplying the history and the fix.

To to fix this, go to “HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\10.0\
Languages\Language Services\Basic\” and rename the Single Code Window Only registry key
to something like [your initials here] Single Code Window Only. The following illustration
shows what I did:

Now restart Visual Studio, and you are good to go for the rest of this tip.

164 04 .10 Closing Just the Selected Files You Want

Multiple Views
I came across this while I was checking my email one day and noticed a thread started by the
legendary Deborah Kurata concerning the Window | New Window menu item. The following
example describes how it works.

Open a document window.

Now go to Window | New Window on the menu bar to open a duplicate window of the cur-
rent document.

Notice that “:1” is added to the existing document tab text and that “:2” is appended to the
name on the new document tab. You can apparently do this forever (or at least up to 150,
which is as high as I have tested this feature).

04.10 Closing Just the Selected Files You Want

WInDOWS Alt,W, W

mEnu Window | Windows

COmmAnD Window .Windows

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0010

What do you do when you have a lot of files open and want to close only a few of them? Just
go to Window | Windows on the menu bar, as shown in the following illustration.

 Chapter 4 Working with Documents 165

Select the files you want to close (Ctrl+Left-click), and then click Close Window(s). It closes the
windows you selected and leaves the rest open.

04.11 Understanding the File Open Location

mEnu Tools | Options | Environment | Documents

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0035

Have you ever noticed that when you go to open a file in Visual Studio (Ctrl+O) it automati-
cally uses the directory of the current active document?

166 04 .12 Show Previous Versions

This is controlled by the Open File Using Directory Of Currently Active Document option. You
can find this at Tools | Options | Environment | Documents.

You can turn this feature off by clearing its check box, and Visual Studio then uses
the DefaultFileOpenLocation from HKEY_CURRENT_USER\Software\Microsoft\
VisualStudio\<version> in the registry instead.

Be aware that the DefaultFileOpenLocation changes every time you successfully open a file
in the Open File dialog box. However, the update is not written to the registry until you close
Visual Studio.

04.12 Show Previous Versions

VERSIOnS 2008, 2010

CODE vstipEnv0036

Note For more information about previous versions including how to activate it if you don’t
currently have it turned on, go to http://windows.microsoft.com/en-US/windows-vista/Previous-
versions-of-files-frequently-asked-questions.

Ever want to go back in time when you save a change to your code that you didn’t want
saved? If you use source control, you are usually OK, but if you don’t, this tip is for you.

If you run a Windows Vista or later operating system (excluding Home Editions), you have an
option you might not have noticed before called Show Previous Versions. It shows up in vari-
ous applications, such as Notepad, as shown in the following illustration.

 Chapter 4 Working with Documents 167

You can also see this option in the Open Project dialog box as well.

When you click Show Previous Versions, you can see prior versions of the current directory
you are in, as shown in the following illustration.

168 04 .13 Using Custom File Extension Associations

Now you can open previous versions of solutions, projects, files, and so forth, and do what
you like.

04.13 Using Custom File Extension Associations

WInDOWS Alt,T, O

mEnu Tools | Options | Text Editor | File Extension

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0038

If you have a custom file extension that you would like to associate with an editing experi-
ence, just go to Tools | Options | Text Editor | File Extension to see the options shown in the
following illustration.

Simply type in your extension and the editing experience you want to have when it is
opened. In the following example, I have a .cool extension that is associated with the Script
Editor:

When I click Add, as shown in the preceding illustration, the following information is added
to the overall list:

 Chapter 4 Working with Documents 169

Notice that you can select any item in the list, modify the extension and/or editor, and then
click Apply to save the changes. Additionally, you can click Remove to take any entry out of
the list.

 171

Chapter 5

Finding Things

“I am in hopes, then, that we may find the object of our search thus. I imagine that our
state, being rightly organized, is a perfectly good state.”

—Plato, “The Republic”

It’s very frustrating when you are looking for something in your code and can’t find it.
This can range from a simple method definition to a complex set of classes in the .NET
Framework, and everything in between. This chapter explores how to use the various search
features in Visual Studio.

The ability to find information and then act on that information in some way is one of the
central keys to creating good code. When we search for or replace code with complex criteria,
our mastery of the various Find dialog boxes becomes the difference between a few minutes
or several hours of work.

05.01 Repeat Your Last Search

DEFAulT F3 (next); Shift+F3 (previous)

VISuAl BASIC 6 F3 (next); Shift+F3 (previous)

VISuAl C# 2005 F3 (next); Shift+F3 (previous)

VISuAl C++ 2 F3 (next); Shift+F3 (previous)

VISuAl C++ 6 F3 (next); Shift+F3 (previous)

VISuAl STuDIO 6 F3 (next); Shift+F3 (previous)

WInDOWS [no shortcut]

COmmAnD Edit .FindNext; Edit .FindPrevious

VERSIOnS 2005, 2008, 2010

CODE vstipFind0004

After you perform a Find operation, you can quickly repeat that find. The following steps
show you how.

Verify that your last Find shows up in the Find combo box on the Standard toolbar (usually
located toward the upper right of your screen).

172 05 .02 Using Quick Find

Press F3 (next) or Shift+F3 (previous) to move through the results.

Continue pressing F3 (next) or Shift+F3 (previous) as needed to find what you are looking for.

05.02 Using Quick Find

DEFAulT Ctrl+F

VISuAl BASIC 6 Ctrl+F

VISuAl C# 2005 Ctrl+F

VISuAl C++ 2 Alt+F3

VISuAl C++ 6 Ctrl+F

VISuAl STuDIO 6 Ctrl+F

WInDOWS Alt, E, F, F

mEnu Edit | Find and Replace | Quick Find

COmmAnD Edit .Find

VERSIOnS 2005, 2008, 2010

CODE vstipFind0007

There’s more to Quick Find than meets the eye. The first thing to understand is that this is
a tool window, so it can be moved and docked like any other tool window. Press Ctrl+F to
bring up Quick Find.

 Chapter 5 Finding Things 173

The Quick Find drop-down menu lets you choose what type of find you want to do:

Find What
For this discussion, we want to focus only on Quick Find, but each of these items comes with
its own set of options. The Find What area is used to determine what you want to find:

You can type what to look for in the drop-down combo box, or you can choose from the list
of previous searches:

Don’t worry about the arrow button to the right of the drop-down combo box (not shown
here)—we will get to that later.

Look In
Next is the Look In area. It’s used to determine the scope of your search:

Most of the options are pretty self-explanatory, but we have a couple of key things to know,
as follows:

 1. The Current Project and Entire Solution actions search files whether they are open or
closed.

 2. Current Block is a little misleading because it doesn’t search the current block but the
entire method you are currently in.

174 05 .02 Using Quick Find

Find Options
The Find Options area is where the fun really happens:

Following is a run-down of these options:

Match case
This option makes your search case-specific. Searching for elocal would show “elocal” but not
“eLocal” or any other variant.

Match whole word
By default, your search is a “contains” operation and therefore finds a result anywhere the
word exists. For example, searching for “elocal” finds “elocal” and “elocalstuff”, and so on.
This option restricts the search to only the word by itself. So, in this example, it finds “elocal”
but not “elocalstuff.”

Search up
Ordinarily, the search starts from the current cursor location and searches down in the cur-
rent document. You can use this option to search up from the current cursor location instead.

Use
This option is a lot more interesting and requires a bit of explanation. When you select this,
you get to choose between Regular Expressions and Wildcards:

When you use this option, it automatically enables the Expression Builder button to the right
of the Find What combo box:

 Chapter 5 Finding Things 175

Regular expressions

Whether or not you are familiar with regular expressions, Visual Studio has its own syntax,
so be aware of the differences. The following illustration shows what options the Expression
Builder button provides you when Regular Expressions is selected.

Note To see the details of the regular expression syntax available in Visual Studio, see the topic
“Regular Expressions (Visual Studio)” at http://msdn.microsoft.com/en-us/library/2k3te2cs.aspx.

Wildcards

These aren’t as advanced as regular expressions but are more familiar to people. They al-
low you to use special characters to represent one or more letters. More information about
wildcard searches can be found at http://msdn.microsoft.com/en-us/library/afy96z92.aspx.
The following illustration shows what options the Expression Builder button provides when
Wildcards is selected.

176 05 .03 Using a Simple Quick Replace

Buttons
Finally, we have the two buttons at the bottom of the Quick Find tool window:

Find Next
Keeps going to the next instance of the search term you are looking for until it reaches your
original starting point.

Bookmark All
Automatically places a bookmark at every location where the search term is found. Use this
with caution because it can definitely cause a large number of bookmarks to be created.

05.03 Using a Simple Quick Replace

DEFAulT Ctrl+H

VISuAl BASIC 6 Ctrl+H

VISuAl C# 2005 Ctrl+H

VISuAl C++ 2 Ctrl+H

VISuAl C++ 6 Ctrl+H

VISuAl STuDIO 6 Ctrl+H

WInDOWS Alt, E, F, R

mEnu Edit | Find and Replace | Quick Replace

COmmAnD Edit .Replace

VERSIOnS 2005, 2008, 2010

CODE vstipFind0008

Previously, we looked at Quick Find, and now we will look at Quick Replace. They are almost
exactly the same except for the replace operation itself. For that reason, I will not repeat all
the options here but refer you back to vstipFind0007 (“Using Quick Find,” page 172), for most
of the details.

Press Ctrl+H to bring up Quick Replace:

 Chapter 5 Finding Things 177

This is a tool window, so it can be docked like any other tool window, pretty much anywhere
you want. Notice that the Quick Replace drop-down menu lets you choose what type of re-
place you want to do:

For this discussion, let’s focus only on Quick Replace. The Find What area is used to deter-
mine what you want to find:

The Replace With area functions exactly the same way, but it takes the text that you want to
be used to replace the Find What text with:

The Look In and Find Options function the same way as using Quick Find and are explained
in vstipFind0007 (“Using Quick Find,” page 172).

Finally, we have the three buttons at the bottom of the Quick Replace tool window:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

178 05 .04 Hide the Quick Find and Quick Replace Tool Window After the First Match

●● Find next—Selects the next instance of the search term you are looking for until it
reaches your original starting point.

●● Replace—Replaces the currently selected item from Find What by using the text in
Replace With.

●● Replace All—Replaces all instances of Find What by using the text in Replace With.
This produces a dialog box that shows how many replacements were made:

Make sure to pay attention to this value because it might be higher (or lower) than expected
and might require further investigation. If you make a mistake, you can always undo a
Replace All:

05.04 Hide the Quick Find and Quick Replace Tool Window After the
First Match

WInDOWS Alt, T, O

mEnu Tools | Options | Environment | Find and Replace

VERSIOnS 2005, 2008, 2010

CODE vstipFind0010

When using the Quick Find or the Quick Replace tool window, you have an option to make
the window disappear after the first match. This can be useful when you want to use your
shortcut keys after the first match is found.

Just go to Tools | Options | Environment | Find And Replace, and then select the Hide Find
And Replace Window After A Match Is Located For Quick Find Or Quick Replace check box.

 Chapter 5 Finding Things 179

05.05 Undo Quick Replace and Replace in Files

DEFAulT Ctrl+Z; Alt+Backspace

VISuAl BASIC 6 Ctrl+Z; Alt+Backspace

VISuAl C# 2005 Ctrl+Z; Alt+Backspace

VISuAl C++ 2 Ctrl+Z; Alt+Backspace

VISuAl C++ 6 Ctrl+Z; Alt+Backspace

VISuAl STuDIO 6 Ctrl+Z; Alt+Backspace

WInDOWS Alt,E, U

mEnu Edit | Undo

COmmAnD Edit .Undo

VERSIOnS 2005, 2008, 2010

CODE vstipFind0020

When using Find And Replace, people often wonder under what conditions you can undo
the changes. Because performing a Find Next and Replace operation is very straightforward
and easy to undo, let’s focus on how to undo the “Replace All” operations. Following is a
summary of the conditions that allow undo to happen.

Quick Replace (Ctrl+H)
Let’s assume we’re choosing the Quick Replace option with the Look In option set to Current
Project or Entire Solution:

A Replace All operation, by default, opens documents and marks them by putting an asterisk
in the file name tab so that you can undo the changes:

180 05 .05 Undo Quick Replace and Replace in Files

When we undo (Ctrl+Z), it reverses all the changes made. In this case, it undoes all eleven
changes:

From the toolbar, the following entry appears in the undo stack:

Replace in Files (Ctrl+Shift+H)
If we perform a Replace in Files operation with Look In set to Current Project, Entire Solution,
or Visual C++ Include Directories, we see the following dialog box:

 Chapter 5 Finding Things 181

As shown in the preceding illustration, notice the option called Keep Modified Files Open
After Replace All. If we do not select this option and click Replace All, we get the following
message:

Checking the Replace All Will Open All Files With Changes For Editing makes it possible to
undo all the changes made:

The entry in the undo stack on the toolbar looks like this:

So, as you can see, it is quite easy to undo the changes made by Quick Replace and Replace
in Files.

182 05 .06 Using the Find Combo Box Keyboard Shortcuts

05.06 Using the Find Combo Box Keyboard Shortcuts

DEFAulT Ctrl+D (find); Ctrl+/ (run command); Ctrl+G (go to line); Ctrl+Shift+G (go to file); F9 (set
breakpoint)

VISuAl BASIC 6 [no shortcut] (find); [no shortcut] (run command); [no shortcut] (go to line); Ctrl+Shift+G (go to
file); F9 (set breakpoint)

VISuAl C# 2005 Ctrl+/ (find); [no shortcut] (run command); Ctrl+G (go to line); Ctrl+Shift+G (go to file); F9 (set
breakpoint)

VISuAl C++ 2 Ctrl+F (find); ALT+A (find); Ctrl+D (find); Ctrl+/ (run command); Ctrl+G (go to line); Ctrl+Shift+G
(go to file); F9 (set breakpoint); Ctrl+Shift+F9 (set breakpoint)

VISuAl C++ 6 Ctrl+D (find); Ctrl+/ (run command); Ctrl+G (go to line); Ctrl+Shift+G (go to file); F9 (set
breakpoint)

VISuAl STuDIO 6 Ctrl+Shift+F (find); Ctrl+/ (run command); Ctrl+G (go to line); Ctrl+Shift+G (go to file); F9 (set
breakpoint)

COmmAnD Edit .GoToFindCombo; Tools .GoToCommandLine; Edit .GoTo; Edit .OpenFile; Debug .
ToggleBreakpoint

VERSIOnS 2005, 2008, 2010

CODE vstipFind0019

We have looked at the Find Combo box in a variety of places. Recall that this toolbar item is
located on the standard toolbar by default:

I thought it would be a good idea to consolidate the keyboard shortcuts of this wonderful
tool into one place.

Find (Ctrl+D)
First and foremost, the Find / Command box is used to find strings. Just press Ctrl+D to go to
the box and type in your search term:

When you press Enter, it searches for your string by using the settings from Quick Find
(Ctrl+F) as it searches. Pressing Enter again finds the next instance, and so on.

Run Command (Ctrl+/)
The Find / Command box is also used to run commands. For more information about com-
mands, see vstipTool0067 (“Understanding Commands: Simple Commands,” page 110). Just
press Ctrl+/ to go to the box, and type in your command:

 Chapter 5 Finding Things 183

When you press Enter, it runs the command you typed.

Go To Line (Ctrl+G)
When in the Find / Command box, you can type any line number:

Then press Ctrl+G, and you are taken to the line number that you entered.

Go To File (Ctrl+Shift+G)
Type in any file name that is in your solution or in the INCLUDE path:

Use Ctrl+Shift+G to go to the file. If the file isn’t already open, this command opens the file
first.

Set a Breakpoint (F9)
Enter any function name:

Then press F9, and Visual Studio sets a breakpoint on the function:

A couple of things to note:

●● Pressing F9 again does not turn off the breakpoint—that is, it’s not a toggle.

●● This feature works only with open documents.

184 05 .07 Using Incremental Search

05.07 Using Incremental Search

DEFAulT Ctrl+I

VISuAl BASIC 6 Alt+I

VISuAl C# 2005 Ctrl+I

VISuAl C++ 2 Ctrl+I

VISuAl C++ 6 Ctrl+I

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt,E, V, S

mEnu Edit | Advanced | Incremental Search

COmmAnD Edit .IncrementalSearch

VERSIOnS 2005, 2008, 2010

CODE vstipFind0001

Incremental search is a powerful feature to use when you want to keep your cursor in the
editor while searching in the current document. It allows you to keep your hands on the key-
board without having to use the mouse for any dialog boxes.

To conduct an incremental search, press Ctrl+I and start typing the text you are searching
for. You’ll see the cursor in the editor jump to the first match, highlighting the current search
string, and your mouse cursor turns into a pair of binoculars with an arrow pointing in the
direction (up or down) you are searching:

If you look at the status bar, you can see the details of your incremental search:

Press Ctrl+I again to jump to the next occurrence of the search string:

The following table lists all the options you can leverage while in this mode:

 Chapter 5 Finding Things 185

action shortcut

Move to the next match in the file Ctrl+I

Reverse the direction of the search Ctrl+Shift+I

Remove a character from the search string Backspace

Stop the incremental search Esc

05.08 Search the Currently Selected String Without the Find Window

DEFAulT Ctrl+F3 (next);
Ctrl+Shift+F3 (previous)

VISuAl BASIC 6 Ctrl+F3 (next);
Ctrl+Shift+F3 (previous)

VISuAl C# 2005 Ctrl+F3 (next);
Ctrl+Shift+F3 (previous)

VISuAl C++ 2 Ctrl+F3 (next);
Ctrl+Shift+F3 (previous)

VISuAl C++ 6 Ctrl+F3 (next);
Ctrl+Shift+F3 (previous)

VISuAl STuDIO 6 Ctrl+F3 (next);
Ctrl+Shift+F3 (previous)

WInDOWS [no shortcut]

COmmAnD Edit .FindNextSelected;
Edit .FindPreviousSelected

VERSIOnS 2005, 2008, 2010

CODE vstipFind0003

Ever just want to find the next (or previous) instance of a word quickly without using the
Quick Find dialog box? Well, it’s easy.

Put the cursor in any word you want to look for:

Press Ctrl+F3 (next) or Ctrl+Shift+F3 (previous) to start a find:

You can also see a message in the status bar showing you the parameters of the search:

186 05 .09 Find In Files: Find Options

Note As you can see, the find has certain settings already in place. These settings can be
changed in the Find dialog box (Ctrl+F).

After the Find has started, just press F3 (next) or Shift+F3 (previous) to continue searching as
you normally would with a Quick Find.

05.09 Find In Files: Find Options

DEFAulT Ctrl+Shift+F

VISuAl BASIC 6 Ctrl+Shift+F

VISuAl C# 2005 Ctrl+Shift+F

VISuAl C++ 2 Ctrl+Shift+F

VISuAl C++ 6 Ctrl+Shift+F

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt,E, F, I

mEnu Edit | Find and Replace | Find in Files

COmmAnD Edit .FindinFiles

VERSIOnS 2005, 2008, 2010

CODE vstipFind0013

When working in Visual Studio, you often need to search for information in files. Find In Files
allows you to quickly locate information you need. Let’s begin by looking at the options you
can set to find information in files (Ctrl+Shift+F).

Note If you have already read vstipFind0007 (“Using Quick Find,” page 172), you might want
to just skim this one because much of the information is repeated here for those who might not
have read the prior tip.

 Chapter 5 Finding Things 187

Find What
The Find What combo box lets you type in text to find or choose from previous text that has
been searched:

This area is very closely bound to all but one of the options under Find Options:

Following is an overview of these options:

Match case
This option makes your search case-specific. Searching for elocal would show “elocal” but not
“eLocal” or any other variant.

Match whole word
By default, the search is a “contains” operation and finds the word anywhere it exists. For ex-
ample, searching for “elocal” finds “elocal” and “elocalstuff”, and so on.

Use
This is a lot more interesting and requires a bit of explanation. When you select this, you get
to choose between Regular Expressions and Wildcards:

When you use this option, it automatically enables the Expression Builder button to the right
of the Find What combo box:

188 05 .09 Find In Files: Find Options

Regular expressions

Whether or not you are familiar with regular expressions, Visual Studio has its own syntax,
so be aware of the differences. The following illustration shows the options provided by the
Expression Builder button when you have selected Regular Expressions:

Note To see the details of the regular expression syntax available in Visual Studio, see the topic
“Regular Expressions (Visual Studio)” at http://msdn.microsoft.com/en-us/library/2k3te2cs.aspx.

Wildcards

This option isn’t as advanced as regular expressions but is more familiar to most people. It
allows you to use special characters to represent one or more letters. For more information
about wildcard searches, see “Wildcards (Visual Studio) at http://msdn.microsoft.com/en-us/li-
brary/afy96z92.aspx. The following illustration shows the options provided by the Expression
Builder button when Wildcards is selected:

 Chapter 5 Finding Things 189

Look in
The Look in drop-down list lets you specify what areas you want to look in:

Most of the options are pretty self-explanatory. The Current Project and Entire Solution com-
mands search files whether they are open or closed.

The Choose Search Folders and Look At These File Types options are discussed in vstip-
Find0005 (“How to Customize What Files to Search with Find In Files,” in Appendix B [http://
go.microsoft.com/FWLink/?Linkid=223758]):

Include sub-folders
This option searches the current directory and all subdirectories and shows up only if you use
the Visual C++ Include Directories or Choose Search Folders options:

190 05 .10 Find In Files: Result Options

05.10 Find In Files: Result Options

DEFAulT Ctrl+Shift+F (find); F8 (next); Shift+F8 (previous);

VISuAl BASIC 6 Ctrl+Shift+F (find);[no shortcut] (next); [no shortcut] (previous);

VISuAl C# 2005 Ctrl+Shift+F (find); F8 (next); Shift+F8 (previous);

VISuAl C++ 2 Ctrl+Shift+F (find); F4 (next); Shift+F4 (previous);

VISuAl C++ 6 Ctrl+Shift+F (find); F8 (next); F4 (next); Shift+F8 (previous); Shift+F4 (previous);

VISuAl STuDIO 6 [no shortcut] (find); F8 (next); F12 (next); Shift+F8 (previous); Shift+F12 (previous);

WInDOWS Alt,E, F, I (find)

mEnu Edit | Find and Replace | Find in Files

COmmAnD Edit .FindinFiles; Edit .GoToNextLocation; Edit .GoToPrevLocation; Edit .ClearFindResults1; Edit .
ClearFindResults2

VERSIOnS 2005, 2008, 2010

CODE vstipFind0014

When working with Find In Files (Ctrl+Shift+F), you can choose several result options:

Find Results [1,2] Window
The Find Results windows allow you to view and navigate the results of a find operation. Each
time you use Find, the results replace the contents of the previous find. This is why two win-
dows are available—so that you avoid overwriting a find result you might want to keep.

Navigation
You can use F8 and Shift+F8 to go to the next and previous items in the results list. This op-
eration also shows the line of code where the item was found, which includes opening closed
files if needed:

The Find Results windows have toolbar buttons that allow you to go to the next and previous
items as well:

 Chapter 5 Finding Things 191

Clear All
You can manually clear the results in a Find Results window by clicking Clear All:

Display File Names Only
The operation shows only the files names in your results and not the full path and additional
information. This means the result set is much smaller.

Before:

After:

You can do much more with the displayed results than this. See vstipFind0002 (“Customize
How Find In Files Results Are Displayed in the Find Results Window,” page 206) for more
information.

Keep Modified Files Open After Replace All
This option doesn’t apply to Find In Files and is always disabled when doing a find operation.
You can see this option when using the Replace In Files option.

192 05 .11 Replace In Files: Basic Options

05.11 Replace In Files: Basic Options

DEFAulT Ctrl+Shift+H

VISuAl BASIC 6 Ctrl+Shift+H

VISuAl C# 2005 Ctrl+Shift+H

VISuAl C++ 2 Ctrl+Shift+H

VISuAl C++ 6 Ctrl+Shift+H

VISuAl STuDIO 6 Ctrl+Shift+H

WInDOWS Alt,E, F, S

mEnu Edit | Find and Replace | Replace in Files

COmmAnD Edit .ReplaceinFiles

VERSIOnS 2005, 2008, 2010

CODE vstipFind0015

Did you know that you can replace text in files, whether or not they are open, by choosing
Replace In Files (Ctrl+Shift+H)? Let’s take a look at what can be done.

Find Options

Fortunately, the majority of find options are the same for Replace In Files as they are for Find
In Files (see vstipFind0013, “Find In Files: Find Options,” on page 186), so you can leverage
those skills again here.

Replace With

 Chapter 5 Finding Things 193

This area is the most interesting piece of the Replace In Files dialog box. It can be as simple
as a literal string (replacing “static” with “Franc”, for example) or very, very complex. In simple
situations, you just want to use the literal text as a replacement to the Find What text.

Result Options
Again, these options are exactly like the Find In Files options (vstipTool0014, “Find In Files:
Result Options,” page 158) with the exception of the Keep Modified Files Open After Replace
All option:

This option makes it possible to keep modified files open after they are changed so that you
can review the change or make additional manual changes. This is particularly useful when
you are modifying closed files and want to look inside files that were modified.

Execution
After all the options have been set, we can execute find and replace operations by using the
following four buttons:

Find Next
Used to find the next instance of the Find What search string.

Replace
Used to replace the current instance of the Find What string with the Replace With string and
then find the next instance.

Replace All
Used to replace all instances of the Find What string with the Replace With string, in all files
within the Look In scope.

194 05 .12 Go To Definition for Cascading Style Sheets

Warning The Replace All option can get you into big trouble if you don’t pay attention to the
scope of Look In.

Skip File
Available when the Look In list includes multiple files. Choose this button if you do not want
to search or modify the current file. The search continues in the next file on the Look In list.

05.12 Go To Definition for Cascading Style Sheets

DEFAulT F12

VISuAl BASIC 6 F12; Shift+F2

VISuAl C# 2005 F12

VISuAl C++ 2 F11; Alt+F1

VISuAl C++ 6 F12

VISuAl STuDIO 6 [no shortcut]

WInDOWS [no shortcut]

COmmAnD Edit .GoToDefinition

VERSIOnS 2008, 2010

CODE vstipFind0021

For those who are familiar with using Go To Definition in your code, you might not be aware
that you can use the same technique to go to your Cascading Style Sheet (CSS) definition
class for attributes. Just put your cursor inside the class name:

Then press F12 (or right-click and choose Go To Definition). It instantly takes you to the CSS
definition and highlights it:

Now you can review the definition and make changes as you see fit.

 Chapter 5 Finding Things 195

05.13 How to Use Navigate To

DEFAulT Ctrl+, [comma]

VISuAl BASIC 6 Ctrl+, [comma]

VISuAl C# 2005 Ctrl+, [comma]

VISuAl C++ 2 Ctrl+, [comma]

VISuAl C++ 6 Ctrl+, [comma]

VISuAl STuDIO 6 Ctrl+, [comma]

WInDOWS Alt,E, .[period]

mEnu Edit | Navigate To

COmmAnD Edit .NavigateTo

VERSIOnS 2010

CODE vstipTool0006

The Navigate To dialog box is very useful for finding symbols. The search is an “includes”
operation, so it shows you symbols that contain the letters you type. Just put in what you are
looking for:

Notice that the search is not case-specific. However, you might notice a surprise in this dialog
box. Watch what happens when you put in ACm:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

196 05 .14 Understanding Find Symbol

It pays attention to Pascal Case. There is also summary information at the bottom of this dia-
log box:

You’re probably wondering about the Hide External Items option as well. When selected,
only the local project is examined for symbols, instead of your project plus every library you
reference.

Also, notice that the Navigate To syntax does not support special logic or special characters
such as the following:

●● Wildcard matching

●● Boolean logic operators

●● Regular expressions

05.14 Understanding Find Symbol

DEFAulT Alt+F12

VISuAl BASIC 6 Alt+F12

VISuAl C# 2005 Alt+F12

VISuAl C++ 2 Alt+F12; Ctrl+F11; Ctrl+Alt+F11

VISuAl C++ 6 Alt+F12; Ctrl+Shift+Y

VISuAl STuDIO 6 Alt+F12

WInDOWS Alt,E, F, Y

mEnu Edit | Find and Replace | Find Symbol

COmmAnD Edit .FindSymbol

VERSIOnS 2005, 2008, 2010

CODE vstipFind0011

You can quickly search for symbols (objects, definitions, and references) by using the Find
Symbol dialog box (Alt+F12):

 Chapter 5 Finding Things 197

Find What
This is pretty straightforward; you just type in the search string you are looking for.

Note You can also get to Find Symbol by using any shortcut to get to the Find and Replace dia-
log box and selecting Find Symbol from the drop-down list in the upper-right corner.

Look In
This indicates where you want to look:

As you can see, the Look In dialog box has a number of search options.

All Components
Includes the current solution and its referenced components, all of the .NET Framework, and
any components that you have added.

198 05 .14 Understanding Find Symbol

Framework X / Silverlight X
Searches specific versions of the Framework for a symbol.

My Solution
Searches the current open solution.

Custom Component Set (Object Browser)
Searches the predefined custom component set in the Object Browser. See vstipTool0078
(“The Object Browser: Browsing Scope,” page 358) for more information.

Custom Component Set (Find Symbol)
Searches the custom component set defined in this dialog box. You edit the list of compo-
nents by clicking the ellipsis in the dialog box:

The Edit Custom Component Set dialog box allows you to pick components from a variety of
areas to have a specialized search experience when looking for symbols. It allows for a very
refined search capability:

 Chapter 5 Finding Things 199

Look In References
Displays references in the projects within the current browsing scope.

Find Options

Match
Sets criteria for the search string when finding matches.

Whole Word
Finds the complete word only, not partial matches.

Prefix
Finds results where the search string is at the beginning of the result.

Substring
Finds results where the search string is anywhere in the result.

Match Case
Finds only results that exactly match the case of the search string.

Find All
Initiates the search based on the criteria that has been set.

Search Results
When you run a search, the results look something like this:

The icons to the left of each entry indicate what type of symbol you are looking at in the
results. For a complete list of icons and their meanings, see vstipTool0076 (“Class View and
Object Browser Icons,” in Appendix B [http://go.microsoft.com/FWLink/?Linkid=223758]) for more
information.

200 05 .15 Find Symbol Results Shortcuts

Additionally, you can use F8 or Shift+F8 to navigate forward or backward through the results
while automatically showing the location of the result as you proceed.

05.15 Find Symbol Results Shortcuts

DEFAulT F12 (go to definition); Ctrl+F12 (go to declaration); Shift+F12 (find all references); Ctrl+C (copy);
Ctrl+Insert (copy);

VISuAl BASIC 6 F12 (go to definition); Shift+F2 (go to definition); Ctrl+F12 (go to declaration); Alt+F2 (find all
references); Ctrl+C (copy); Ctrl+Insert (copy);

VISuAl C# 2005 F12 (go to definition); Ctrl+F12 (go to declaration); Shift+F12 (find all references); Ctrl+K, Ctrl+R
(find all references); Ctrl+K, R (find all references); Ctrl+C (copy); Ctrl+Insert (copy);

VISuAl C++ 2 F11 (go to definition); Alt+F1 (go to definition); [no shortcut] (find all references); Ctrl+C (copy);
Ctrl+Insert (copy);

VISuAl C++ 6 F12 (go to definition); Ctrl+F12 (go to declaration); Ctrl+Alt+F12 (go to declaration); [no short-
cut] (find all references); Ctrl+C (copy); Ctrl+Insert (copy);

VISuAl STuDIO 6 [no shortcut] (go to definition); Ctrl+F12 (go to declaration); [no shortcut] (find all references);
Ctrl+C (copy); Ctrl+Insert (copy);

WInDOWS Alt,E, C (copy)

mEnu Edit | Copy

COmmAnD Edit .GoToDefinition; Edit .GoToDeclaration; Edit .FindAllReferences;View .BrowseDefinition;Edit .
Copy;Edit .ClearAll

VERSIOnS 2005, 2008, 2010

CODE vstipFind0012

To locate any symbol, you can quickly leverage a series of commands to help you. The nice
thing about these commands is that many of them work both in the Find Symbol Results win-
dow and in the code editor.

Go To Definition (F12)
This command takes you to the definition of the symbol in your code, if one is available.

 Chapter 5 Finding Things 201

Go To Declaration (Ctrl+F12)

Note The information in this section applies to C++ only.

This command takes you to the declaration of the symbol in your code, if one is available.

Go To Reference (Shift+F12)
This command works for any symbol:

This command finds all references to that symbol:

202 05 .15 Find Symbol Results Shortcuts

If you are using the Find Symbol Results window, you can make this much easier by simply
expanding a node in the window. It automatically shows all references:

If no references are found, it tells you that also:

Browse Definition
For any symbol in your results, simply right-click and choose Browse Definition:

Clicking Browse Definition takes you to the primary node (typically top level) for the symbol
in the Object Browser, which can be particularly useful for deeper examination:

 Chapter 5 Finding Things 203

Copy (Ctrl+C)
Allows you to copy the fully qualified name for the selected symbol to the clipboard. You can
then paste the code as text into the code editor.

Clear All
Clears the Find Symbol Results window.

05.16 Replace in Files: Tagged Expressions

DEFAulT Ctrl+Shift+H

VISuAl BASIC 6 Ctrl+Shift+H

VISuAl C# 2005 Ctrl+Shift+H

VISuAl C++ 2 Ctrl+Shift+H

VISuAl C++ 6 Ctrl+Shift+H

VISuAl STuDIO 6 Ctrl+Shift+H

WInDOWS Alt,E, F, S

mEnu Edit | Find and Replace | Replace in Files

COmmAnD Edit .ReplaceinFiles

VERSIOnS 2005, 2008, 2010

CODE vstipFind0016

As mentioned in vstipFind0015 (“Replace In Files: Basic Options,” page 192), the Replace With
area is the most interesting piece of the Replace In Files dialog box. It can be as simple as a
literal string replacement:

204 05 .16 Replace in Files: Tagged Expressions

Under normal situations, this is just the literal text you want to use as a replacement for
the Find What text. However, suppose you choose to use regular expressions:

This enables the Expression Builder:

These options are not like the builder options you get in the Find What area:

In addition to being able to use any of the regular expression characters, you can refer to the
original text and any tagged expressions.

Example
The best way to show how tagged expressions work is with an example. Let’s assume you
have the following text:

 Chapter 5 Finding Things 205

And you use the following options:

Notice the curly brackets around “jones”? That denotes a tagged expression. Every time you
use the brackets, it creates a tagged expression that is numbered (beginning with 1). So, in
this example, we are looking for “bubba{jones}” and replacing it with tagged expression 1
(which is just “jones”). Also, notice the notation used to refer to the tagged expression: \n,
where n is the tagged expression we want.

When I do my replacements, this is the result:

We can take this further. Now we want to turn “bubbajones” into “jonesbubba,” so we can
use the following settings:

So now we are looking for “{bubba}{jones},” which creates tagged expression 1 (“bubba”) and
tagged expression 2 (“jones”). At this point, it’s simply a matter of replacing with the expres-
sions switched around (“\2\1”), and we get the following:

206 05 .17 Customize Results in Find In Files Searches

Of course, this can get much more complex when using regular expressions, so you definitely
need to spend some time learning how to fully leverage these features.

05.17 Customize Results in Find In Files Searches

DEFAulT Ctrl+Shift+F

VISuAl BASIC 6 Ctrl+Shift+F

VISuAl C# 2005 Ctrl+Shift+F

VISuAl C++ 2 Ctrl+Shift+F

VISuAl C++ 6 Ctrl+Shift+F

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt,E, F, I

mEnu Edit | Find and Replace | Find in Files

COmmAnD Edit .FindinFiles

VERSIOnS 2005, 2008, 2010

CODE vstipFind0002

You can customize your Find In Files results to just about any format you can imagine. For
example, let’s say you don’t want to view the entire file path shown in the Find Results tool
window:

Instead, you want this:

 Chapter 5 Finding Things 207

You can easily make this change. Just follow these instructions:

Warning This involves modifying the registry, so use this tip at your own risk.

 1. Open RegEdit.exe.

 2. Go to HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\<version>\Find.

 3. Add a new string called Find Result Format, with a value of fe($l,$c):$t\r\n.

 4. In Visual Studio, run a Find In Files search.

Note You do not need to restart Visual Studio to see the changes made in the registry, which is
great for testing different string combinations.

Variables
For your reference, the following are valid values you can use when creating your own cus-
tom values.

Files
●● $p path

●● $f filename

●● $v drive/unc share

●● $d directory

●● $n name

●● $e .extension

208 05 .17 Customize Results in Find In Files Searches

Location
●● $l line

●● $c col

●● $x end col if on first line, else end of first line

●● $l span end line

●● $C span end col

Text
●● $0 matched text

●● $t text of first line

●● $s summary of hit

●● $T text of spanned lines

Char
●● \n newline

●● \s space

●● \t tab

●● \\ backslash

●● \$ $

 209

Chapter 6

Writing Code

“We will never be rid of code, because code represents the details of the requirements. At
some level those details cannot be ignored or abstracted; they have to be specified. And
specifying requirements in such detail that a machine can execute them is programming.
Such a specification is code.”

—Robert C. Martin, “Clean Code: A Handbook of Agile Software Craftsmanship”

Writing code and debugging code are the two activities we tend to do more than any other
as developers. It’s no accident that this chapter is one of the two largest in the book. Within
these pages, you’ll find tips from older versions all the way through to the great new features
in Visual Studio 2010. Really take your time to absorb the material here, and find those pieces
that are most relevant to your situation.

As you are reading, make sure to pay particular attention to the new IntelliSense and box se-
lection improvements. In my travels, thousands of people have found these particularly use-
ful for daily work. Also, take some time to review the tips on code snippets and discover how
they can accelerate your code writing.

06.01 Zoom In or Out of Text in the Editor Using the Mouse Wheel

WInDOWS Ctrl,Mouse Wheel

COmmAnD View .ZoomIn; View .ZoomOut

VERSIOnS 2010

CODE vstipEdit0002

The editor has a new feature that allows you to instantly change the zoom factor of text. It’s
particularly useful for pair programming and doing code demos for your team. Just hold
down your Ctrl key and use the wheel on your mouse to zoom in or out.

210 06 .02 Zoom In or Out of Text in the Editor

If you don’t like this feature, you can disable it by installing an extension called “Disable
Mouse Wheel Zoom,” which you can find at http://visualstudiogallery.msdn.microsoft.com/
en-us/d088791c-150a-4834-8f28-462696a82bb8?SRC=VSIDE.

06.02 Zoom In or Out of Text in the Editor

DEFAulT Ctrl+Shift+> (zoom in); Ctrl+Shift+< (zoom out)

VISuAl BASIC 6 Ctrl+Shift+> (zoom in); Ctrl+Shift+< (zoom out)

VISuAl C# 2005 Ctrl+Shift+> (zoom in); Ctrl+Shift+< (zoom out)

VISuAl C++ 2 Ctrl+Shift+> (zoom in); Ctrl+Shift+< (zoom out)

VISuAl C++ 6 Ctrl+Shift+> (zoom in); Ctrl+Shift+< (zoom out)

VISuAl STuDIO 6 Ctrl+Shift+> (zoom in); Ctrl+Shift+< (zoom out)

WInDOWS [no shortcut]

COmmAnD View .ZoomIn; View .ZoomOut

VERSIOnS 2010

CODE vstipEdit0003

In vstipEdit0002, “Zoom In or Out of Text in the Editor Using the Mouse Wheel,” on page 209,
I showed you how to use the mouse to zoom in and out of your text. Now I’ll show you two
additional ways to accomplish this goal.

Combo Box
First, you can change the zoom factor for text by using the Zoom combo box in the lower-
left corner of the editor. Simply choose a pre-determined size, or type in a value of your own.
To my knowledge there is no keyboard shortcut for getting to this area.

http://visualstudiogallery.msdn.microsoft.com/en-us/d088791c-150a-4834-8f28-462696a82bb8?SRC=VSIDE
http://visualstudiogallery.msdn.microsoft.com/en-us/d088791c-150a-4834-8f28-462696a82bb8?SRC=VSIDE

 Chapter 6 Writing Code 211

Keyboard
Second, you can use the keyboard shortcuts Ctrl+Shift+Greater Than (>), to zoom in, and
Ctrl+Shift+Less Than (<), to zoom out.

Universal Zoom
The zoom factor is per tab and doesn’t apply across each file, so you need
to manually set it on each tab. Alternatively, you can use an extension called
“Presentation Zoom,” located at http://visualstudiogallery.msdn.microsoft.com/
en-us/6a7a0b57-7059-470d-bcfa-60ceb78dc752?SRC=VSIDE.

06.03 How to Keep from Accidentally Copying a Blank Line

WInDOWS Alt,T, O

mEnu Tools | Options | Text Editor | All Languages | General

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0004

Ever cut something and accidentally cut a blank line? I can’t really think of a good reason to
cut or copy just a blank line, and yet you are still allowed to do it.

The good news is that you can keep this from ever happening again by simply going to
Tools | Options | Text Editor | All Languages | General and clearing the Apply Cut Or Copy
Commands To Blank Lines When There Is No Selection check box.

212 06 .04 Make IntelliSense Transparent

06.04 Make IntelliSense Transparent

WInDOWS Ctrl

VERSIOnS 2008, 2010

CODE vstipEdit0077

Sometimes when you are writing code, you find yourself in a situation where IntelliSense is
covering up something you want to see, as shown in the following illustration.

You can make it temporarily transparent simply by pressing and holding the Ctrl key.

Using this tip, you don’t have to get rid of IntelliSense, look at the code, and then bring
IntelliSense back. Just press the Ctrl key, get the information you need, and move on.

 Chapter 6 Writing Code 213

06.05 Cut or Delete the Current Line

DEFAulT Ctrl+L (cut line);
Ctrl+Shift+L (delete line);
Shift+Del (cut line);
Ctrl+X (cut line)

VISuAl BASIC 6 Ctrl+Y (cut line);
[no shortcut] (delete line);
Shift+Del (cut line);
Ctrl+X (cut line)

VISuAl C# 2005 Ctrl+Y (cut line);
Ctrl+Shift+L (delete line);
Shift+Del (cut line);
Ctrl+X (cut line)

VISuAl C++ 2 Ctrl+Y (cut line);
Ctrl+L (cut line);
Ctrl+Shift+L (delete line);
Shift+Del (cut line);
Ctrl+X (cut line);
Ctrl+Alt+W (cut line)

VISuAl C++ 6 Ctrl+L (cut line);
Shift+Alt+L (cut line);
Ctrl+Shift+L (delete line);
Shift+Del (cut line);
Ctrl+X (cut line)

VISuAl STuDIO 6 Ctrl+M (cut line);
Ctrl+L (cut line);
Ctrl+Shift+L (delete line);
Ctrl+Shift+M (delete line);
Shift+Del (cut line);
Ctrl+X (cut line)

WInDOWS Alt,E, T

mEnu Edit | Cut

COmmAnD Edit .LineCut;
Edit .LineDelete;
Edit .Cut

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0038

You will often find times when you want to cut a line to be pasted somewhere else or just
delete a line entirely. Let’s take a look at how you can quickly cut or delete any line.

Regardless of what you are trying to do, begin by placing your cursor inside the line
anywhere:

214 06 .06 Using the New IntelliSense: Keywords

Cut
If you want to cut the line for use somewhere else, perform one of the following actions:

●● Press Ctrl+L to cut the line; this uses the Edit.LineCut command.

●● Press Shift+Del or Ctrl+X to cut the line using the Edit.Cut command.

There is no difference in the result just two different commands for accomplishing the same
task.

Delete
If you want to delete the line instead, you can use Ctrl+Shift+L to have it permanently re-
moved from your code.

06.06 Using the New IntelliSense: Keywords

DEFAulT Ctrl+J

VISuAl BASIC 6 Ctrl+J

VISuAl C# 2005 Ctrl+J
Ctrl+K, L
Ctrl+K, Ctrl+L

VISuAl C++ 2 Ctrl+J
Ctrl+Alt+T

VISuAl C++ 6 Ctrl+J
Ctrl+Alt+T

VISuAl STuDIO 6 Ctrl+J

WInDOWS Alt,E, I, L

mEnu Edit | IntelliSense | List Members

COmmAnD Edit .ListMembers

VERSIOnS 2010

lAnGuAGES VB, C#

CODE vstipEdit0016

 Chapter 6 Writing Code 215

The one feature we use more than just about anything else in Visual Studio is IntelliSense. It
has been our friend for many years. Well, it just got friendlier. To show you the new features,
let’s take a closer look at Visual Studio 2008 IntelliSense. Notice what happens when you type
Console.Key:

It does what you would expect it to do and highlights the first (in this case, only) item that
begins with the word “Key” in a huge alphabetical list of item names. That’s great, but what if
you don’t know what you are looking for but you do know that it has the word “Key” some-
where in it? Well, you can go search in the Object Browser, of course, or better yet, you can
use the new IntelliSense in Visual Studio 2010. Look what happens when you do the same
thing in Visual Studio 2010:

It now shows only those items that have the word “Key” in them and doesn’t care where
the word is in the name of the member. This results in a significantly smaller list of items in
IntelliSense and an easier way to find names even if you don’t know what they begin with.

216 06 .07 Using the New IntelliSense: Pascal Case

06.07 Using the New IntelliSense: Pascal Case

DEFAulT Ctrl+J

VISuAl BASIC 6 Ctrl+J

VISuAl C# 2005 Ctrl+J
Ctrl+K, L
Ctrl+K, Ctrl+L

VISuAl C++ 2 Ctrl+J
Ctrl+Alt+T

VISuAl C++ 6 Ctrl+J
Ctrl+Alt+T

VISuAl STuDIO 6 Ctrl+J

WInDOWS Alt,E, I, L

mEnu Edit | IntelliSense | List Members

COmmAnD Edit .ListMembers

VERSIOnS 2010

lAnGuAGES VB, C#

CODE vstipEdit0017

Have you ever been in a situation where you wanted to use IntelliSense to get a method but
you’re faced with a ton of methods that start with same word, meaning that you have to type
almost the entire method name?

Well, those days are over. Let’s say you want the SetWindowSize method, but you really, real-
ly don’t want to type it out or even scroll down to get the method. IntelliSense now supports
Pascal case. All you have to do is type SWS, and you are all set:

What if you don’t remember all the uppercase letters in a name? No problem. Just type what
you know (they don’t even have to be in the correct order), and IntelliSense narrows the list
down for you:

 Chapter 6 Writing Code 217

06.08 Comment and Uncomment in Web Pages

DEFAulT Ctrl+K, Ctrl+C (comment);
Ctrl+K, Ctrl+U (uncomment)

VISuAl BASIC 6 Ctrl+K, Ctrl+C (comment);
Ctrl+K, Ctrl+U (uncomment)

VISuAl C# 2005 Ctrl+K, Ctrl+C (comment);
Ctrl+E, Ctrl+C (comment);
Ctrl +E, C (comment);
Ctrl+K, Ctrl+U (uncomment)

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+K, Ctrl+C (comment);
Ctrl+K, Ctrl+U (uncomment)

VISuAl STuDIO 6 Ctrl+K, Ctrl+C (comment);
Ctrl+K, Ctrl+U (uncomment)

WInDOWS Alt,E, V, M (comment)
Alt,E, V, E (uncomment)

mEnu Edit | Advanced | Comment Selection;
Edit | Advanced | Uncomment Selection

COmmAnD Edit .CommentSelection;
Edit .UncommentSelection

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0083

By now, you probably know that you can comment and uncomment your code, but did you
know that you can do the same thing with your source during web development? Just put
your cursor inside any element you want commented, as shown in the following illustration.

Comment
Now just press Ctrl+K, Ctrl+C to comment out the selection.

Of course, you can also select multiple elements:

And you can comment them out too:

218 06 .09 Insert a Blank Line Above or Below the Current Line

Uncomment
Naturally, you can put your cursor inside any commented area:

And you can uncomment that area by pressing Ctrl+K, Ctrl+U:

06.09 Insert a Blank Line Above or Below the Current Line

DEFAulT Ctrl+Enter (line above); Ctrl+Shift+Enter (line below)

VISuAl BASIC 6 Ctrl+Enter (line above); Ctrl+Shift+Enter (line below)

VISuAl C# 2005 Ctrl+Enter (line above); Ctrl+Shift+Enter (line below)

VISuAl C++ 2 Ctrl+Enter (line above); Ctrl+Shift+Enter (line below)

VISuAl C++ 6 Ctrl+Enter (line above); Ctrl+Shift+Enter (line below)

VISuAl STuDIO 6 Ctrl+Enter (line above); Ctrl+Shift+Enter (line below)

WInDOWS [no shortcut]

COmmAnD Edit .LineOpenAbove; Edit .LineOpenBelow

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0005

This is a great feature for adding extra white space when you need it. Go to any line in the
editor, and press Ctrl+Enter to insert a blank line above or press Ctrl+Shift+Enter to insert a
blank line below the current line, as shown in the following illustration.

 Chapter 6 Writing Code 219

06.10 Transpose Lines, Words, and Characters

DEFAulT Alt+Shift+T (line); Ctrl+Shift+T (word); Ctrl+T (character)

VISuAl BASIC 6 Alt+Shift+T (line); Ctrl+Shift+T (word); [no shortcut] (character)

VISuAl C# 2005 Alt+Shift+T (line); Ctrl+Shift+T (word); Ctrl+T (character)

VISuAl C++ 2 Alt+Shift+T (line); Ctrl+Shift+T (word); Ctrl+T (character)

VISuAl C++ 6 Alt+Shift+T (line); Ctrl+Shift+T (word); Ctrl+T (character)

VISuAl STuDIO 6 Alt+Shift+T (line); Ctrl+Shift+T (word); Ctrl+T (character)

WInDOWS [no shortcut]

COmmAnD Edit .LineTranspose; Edit .WordTranspose; Edit .CharTranspose

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0042

Ever have a line you want to move down or switch with another line? Just find a couple of
lines you want to switch, and put your cursor in the top line:

Then press Alt+Shift+T to transpose the two lines:

You can also do something similar with words. Place the cursor in the word you want to
transpose:

Press Ctrl+Shift+T:

Just want to transpose a character? Just place the cursor to the right of the character you
want to transpose:

And then press Ctrl+T to transpose that character with the character at its immediate right:

220 06 .11 How to Cycle Through the Clipboard Ring

06.11 How to Cycle Through the Clipboard Ring

DEFAulT Ctrl+Shift+V; Ctrl+Shift+Insert

VISuAl BASIC 6 Ctrl+Shift+V; Ctrl+Shift+Insert

VISuAl C# 2005 Ctrl+Shift+V; Ctrl+Shift+Insert

VISuAl C++ 2 Ctrl+Shift+V; Ctrl+Shift+Insert

VISuAl C++ 6 Ctrl+Shift+Insert

VISuAl STuDIO 6 Ctrl+Shift+V; Ctrl+Shift+Insert

WInDOWS Alt,E, Y

mEnu Edit | Cycle Clipboard Ring

COmmAnD Edit .CycleClipboardRing

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0001

The Clipboard Ring keeps track of the past 20 items you’ve either cut or copied so that you
can reuse them over and over again. After you hit item 20, it goes back to the first item. This
is why the feature is called the Clipboard Ring.

This is particularly useful when you move between several code windows and need to copy
and paste different items. You can copy all of the code from the original window and then go
to one of the other windows and, using the Clipboard Ring, paste all of your items.

Try it out. Copy a few pieces of text into your clipboard, and then keep pressing Ctrl+Shift+V
to repeat-paste them into the editor. This is one seriously cool time-saving feature.
Unfortunately, there is no way to see the contents of the Clipboard Ring in Visual Studio
without cycling through the list.

 Chapter 6 Writing Code 221

06.12 Using the Undo and Redo Stack

DEFAulT Ctrl+Z (undo); Alt+Backspace (undo); Ctrl+Shift+Z (redo); Alt+Shift+Backspace (redo); Ctrl+Y
(redo)

VISuAl BASIC 6 Ctrl+Shift+Z (redo); Alt+Shift+Backspace (redo)

VISuAl C# 2005 Ctrl+Z (undo); Alt+Backspace (undo); Ctrl+Shift+Z (redo); Alt+Shift+Backspace (redo); Ctrl+Y
(redo)

VISuAl C++ 2 Ctrl+Shift+Z (redo); Alt+Shift+Backspace (redo); Ctrl+Y (redo); Ctrl+A

VISuAl C++ 6 Ctrl+Z (undo); Alt+Backspace (undo); Ctrl+Shift+Z (redo); Alt+Shift+Backspace (redo); Ctrl+Y
(redo)

VISuAl STuDIO 6 Ctrl+Z (undo); Alt+Backspace (undo); Ctrl+Shift+Z (redo); Alt+Shift+Backspace (redo); Ctrl+Y
(redo)

WInDOWS Alt,E, U (undo); Alt,E, R (redo)

mEnu Edit | Undo; Edit | Redo

COmmAnD Edit .Undo; Edit .Redo

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0045

We have all used Ctrl+Z (undo) at one time or another to fix a mistake. Did you know you
don’t have to press Ctrl+Z a billion times to go back to a particular action? The Undo and
Redo stacks are readily available for you to use for quick, multiple undo or redo operations.

It’s easy to use. Just locate the Undo and Redo section of the toolbar shown in the following
illustration.

Next, click the drop-down arrow for the action you want to perform. In this case, let’s look at
the Undo stack:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

222 06 .13 Undo and Redo Global Actions

By default, it undoes only the last action. However, notice what happens when I put my
mouse over the list:

It automatically selects multiple actions to undo or redo. Also notice that it shows you at the
bottom how many actions you are about to undo. When you have all the actions selected
that you want to undo or redo, just click the left mouse button.

06.13 Undo and Redo Global Actions

WInDOWS Alt,E, N (undo); Alt,E, U (redo)

mEnu Edit | Undo Last Global Action; Edit | Redo Last Global Action

COmmAnD Edit .UndoLastGlobalAction; Edit .RedoLastGlobalAction

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0020

Everyone knows about undo and redo, but did you know that the Edit menu offers global
versions of these actions?

By definition, global actions impact multiple files. Global actions include renaming a class or
namespace, performing a find-and-replace operation across a solution, refactoring a data-
base, or any other action that changes multiple files.

You can apply the global undo and redo commands to actions in the current Visual Studio
session, even after you close the solution that an action applies to.

 Chapter 6 Writing Code 223

06.14 How to Use Reference Highlighting

DEFAulT Ctrl+Shift+Down Arrow (next); Ctrl+Shift+Up Arrow (previous)

VISuAl BASIC 6 Ctrl+Shift+Down Arrow (next); Ctrl+Shift+Up Arrow (previous)

VISuAl C# 2005 Ctrl+Shift+Down Arrow (next); Ctrl+Shift+Up Arrow (previous)

VISuAl C++ 2 Ctrl+Shift+Down Arrow (next); Ctrl+Shift+Up Arrow (previous)

VISuAl C++ 6 Ctrl+Shift+Down Arrow (next); Ctrl+Shift+Up Arrow (previous)

VISuAl STuDIO 6 Ctrl+Shift+Down Arrow (next); Ctrl+Shift+Up Arrow (previous)

WInDOWS [no shortcut]

COmmAnD Edit .NextHighlightedReference; Edit .PreviousHighlightedReference

VERSIOnS 2010

lAnGuAGES C#, VB

CODE vstipEdit0010

This is absolutely one of my favorite tips because you don’t have to do anything to make it
work. The MSDN documentation (at http://msdn.microsoft.com/en-us/library/ee349251.aspx)
describes reference highlighting this way:

“When you click a symbol in the Code Editor, all instances of the symbol are highlighted in
the document. […] Highlighted symbols may include declarations and references, and gener-
ally anything else that Find All References would return. This includes the names of classes,
objects, variables, methods, and properties.”

Navigation
All you have to do is click in any symbol, and it automatically highlights any references in the
current document. You can navigate through the highlights by using Ctrl+Shift+Down Arrow
(next) or Ctrl+Shift+Up Arrow (previous).

http://msdn.microsoft.com/en-us/library/ee349251.aspx

224 06 .15 Moving or Selecting Between Matching Braces (C++, C# Only)

Turning it Off
What if you don’t like this feature? You can always turn it off by using following instructions,
depending on whether you’re working in VB or C#.

VB: Go to Tools | Options | Text Editor | Basic | VB Specific, and clear the Enable Highlighting
Of References And Keywords check box.

C#: Go to Tools | Options | Text Editor | C#| Advanced, and clear the Highlight References To
Symbol Under Cursor check box.

06.15 Moving or Selecting Between Matching Braces
(C++, C# Only)

DEFAulT Ctrl+] (move); Ctrl+Shift+] (select)

VISuAl BASIC 6 Ctrl+] (move); Ctrl+Shift+] (select)

VISuAl C# 2005 Ctrl+] (move); Ctrl+Shift+] (select)

VISuAl C++ 2 Ctrl+] (move); Ctrl+M (move);
Ctrl+Shift+] (select); Ctrl+Shift+M (select)

VISuAl C++ 6 Ctrl+] (move); Ctrl+Shift+] (select)

VISuAl STuDIO 6 Ctrl+] (move); Ctrl+Shift+] (select)

WInDOWS [no shortcut]

COmmAnD Edit .GotoBrace; Edit .GotoBraceExtend

VERSIOnS 2005, 2008, 2010

lAnGuAGES C++, C#

CODE vstipEdit0075

When you are working with the C* languages, you sometimes want to move to the bottom
or top of a method or code block. You can quickly travel or select between matching braces
by performing the following steps.

 Chapter 6 Writing Code 225

Moving
Click next to an opening or closing brace:

Now press Ctrl+] to go from one brace to the other one. You should find yourself easily navi-
gating between them. This technique is very useful when you have braces far apart from
each other. Also notice that the term “brace” is very loose here and applies to curly braces,
square brackets, and parentheses.

Selecting
In addition to moving, you can also select everything between matching braces by pressing
Ctrl+Shift+], as shown in the following illustration.

06.16 Invoke Statement Completion

DEFAulT Ctrl+J

VISuAl BASIC 6 Ctrl+J

VISuAl C# 2005 Ctrl+J; Ctrl+K, Ctrl+L; Ctrl+K, L

VISuAl C++ 2 Ctrl+J; Ctrl+Alt+T

VISuAl C++ 6 Ctrl+J; Ctrl+Alt+T

VISuAl STuDIO 6 Ctrl+J

WInDOWS Alt,E, I, L

mEnu Edit | IntelliSense | List Members

COmmAnD Edit .ListMembers

VERSIOnS 2005, 2008, 2010

lAnGuAGES C++ (not available in VS2010), C#, VB

CODE vstipEdit0061

226 06 .17 Move Between the Common Tab and All Tab in Statement Completion (VB)

This little trick is particularly useful if you lose IntelliSense and want to get it back. You can
invoke statement completion from the command line by using Ctrl+J.

06.17 Move Between the Common Tab and All Tab in Statement
Completion (VB)

DEFAulT Alt+ . (All Tab); Alt+, (Common Tab)

COmmAnD Edit .IncreaseFilterLevel; Edit .DecreaseFilterLevel

VERSIOnS 2005, 2008, 2010

lAnGuAGES VB

CODE vstipEdit0064

You don’t have to take your hands off the keyboard when switching between Common and
All in statement completion for Visual Basic. Just press Alt+Period (.) to go to the All tab, and
press Alt+Comma (,) to go to the Common tab.

 Chapter 6 Writing Code 227

06.18 Using Parameter Information

DEFAulT Ctrl+Shift+Space (show Parameter Info); Up or Down Arrow (move to next or previous
overload)

VISuAl BASIC 6 Ctrl+Shift+Space (show Parameter Info); Ctrl+Shift+I (show Parameter Info); Up or Down Arrow
(move to next or previous overload)

VISuAl C# 2005 Ctrl+Shift+Space (show Parameter Info); Ctrl+K, Ctrl+P (show Parameter Info); Ctrl+K, P (show
Parameter Info); Up or Down Arrow (move to next or previous overload)

VISuAl C++ 2 Ctrl+Shift+Space (show Parameter Info); Up or Down Arrow (move to next or previous
overload)

VISuAl C++ 6 Ctrl+Shift+Space (show Parameter Info); Up or Down Arrow (move to next or previous
overload)

VISuAl STuDIO 6 Ctrl+Shift+Space (show Parameter Info); Ctrl+Shift+I (show Parameter Info); Up or Down Arrow
(move to next or previous overload)

WInDOWS Alt,E, I, P

mEnu Edit | IntelliSense | Parameter Info

COmmAnD Edit .ParameterInfo

VERSIOnS 2005, 2008, 2010

lAnGuAGES C++ (not available in VS2010); C#, VB

CODE vstipEdit0062

When working with a function, you automatically get parameter information, as shown in the
following illustration.

If it goes away and you want it back, you can always press Ctrl+Shift+Space.

Also notice that the function in this example has 19 overloads. You can iterate through them
by pressing your Up or Down Arrow keys. If you are using your mouse, you can go forward
by clicking anywhere in the parameter information area. You do not have to click the tiny up
and down arrows inside the box unless you want to go backward in the list.

228 06 .19 Using Quick Info

06.19 Using Quick Info

DEFAulT Ctrl+K, Ctrl+I

VISuAl BASIC 6 Ctrl+K, Ctrl+I; Ctrl+I

VISuAl C# 2005 Ctrl+K, Ctrl+I; Ctrl+K, I

VISuAl C++ 2 Ctrl+T

VISuAl C++ 6 Ctrl+K, Ctrl+I

VISuAl STuDIO 6 Ctrl+K, Ctrl+I; Ctrl+I

WInDOWS ALT,E, I, Q

mEnu Edit | IntelliSense | Quick Info

COmmAnD Edit .QuickInfo

VERSIOnS 2005, 2008, 2010

lAnGuAGES C++ (not available in VS2010), C#, VB

CODE vstipEdit0063

The Quick Info option helps you identify the details of a particular function. It comes up au-
tomatically as you type, but if it goes away, you can quickly bring it back by placing the cur-
sor in a method and pressing Ctrl+K, Ctrl+I.

06.20 Word Completion

DEFAulT Ctrl+Space; Alt+Right Arrow

VISuAl BASIC 6 Ctrl+Space; Alt+Right Arrow

VISuAl C# 2005 Ctrl+Space; Alt+Right Arrow
Ctrl+K, Ctrl+W; Ctrl+K, W

VISuAl C++ 2 Ctrl+Space; Alt+Right Arrow

VISuAl C++ 6 Ctrl+Space; Alt+Right Arrow

VISuAl STuDIO 6 Ctrl+Space; Alt+Right Arrow

WInDOWS Alt,E, I, W

mEnu Edit | IntelliSense | Complete Word

COmmAnD Edit .CompleteWord

VERSIOnS 2005, 2008, 2010

lAnGuAGES C++ (not available in VS2010), C#, VB

CODE vstipEdit0065

 Chapter 6 Writing Code 229

This one is very popular and one of the core skills to use in Visual Studio. Let’s say you are
typing and you have the situation shown in the following illustration.

You can press Ctrl+Space or Alt+Right Arrow to complete the word:

This works only if there are no other possible matches. Suppose, for example, that you have
something similar to the following:

If you now press Ctrl+Space or Alt+Right Arrow to complete the word, you would just get
statement completion instead.

06.21 Drag and Drop Code into the Toolbox

VERSIOnS 2005, 2008, 2010

CODE vstipTool0007

Got code you use all the time? Start using the Toolbox for more than just controls. When you
are in the Editor, the Toolbox appears as shown in the following illustration.

This is a vast expanse of opportunity! Just select some text from the editor, and drag it into
the Toolbox and see the magic happen.

Now you have code ready to go anytime. Just place the cursor where you want the code to
go, and double-click the item in your Toolbox.

230 06 .21 Drag and Drop Code into the Toolbox

You can also click and drag where you want the code to go, as shown in the following
illustration.

You also have a couple of extra things you can do. For example, you can rename (among
other tasks) the item in the Toolbox to whatever you would like by right-clicking on it:

 Chapter 6 Writing Code 231

You can also create additional tabs, delete existing tabs, and rename tabs to organize the
Toolbox better.

06.22 Using Smart Tags from the Keyboard

DEFAulT Ctrl+ . (period);
Shift+Alt+F10

VISuAl BASIC 6 Ctrl+ . (period);
Shift+Alt+F10

VISuAl C# 2005 Ctrl+ . (period);
Shift+Alt+F10

VISuAl C++ 2 Ctrl+ . (period);
Shift+Alt+F10

VISuAl C++ 6 Ctrl+ . (period);
Shift+Alt+F10

VISuAl STuDIO 6 Ctrl+ . (period);
Shift+Alt+F10

WInDOWS [no shortcut]

COmmAnD View .ShowSmartTag

VERSIOnS 2008, 2010

lAnGuAGES C#, VB

CODE vstipEdit0076

You have probably seen the smart tag indicator before. It’s a blue or red bar that shows up in
your code when you use certain items.

Most people just put their mouse over the line and choose the option(s) listed in the tag.

232 06 .23 Organize Using Statements (C# Only)

However, did you know that you can use a keyboard shortcut to bring up the options? Just
press Ctrl+Period (.), and it brings up the option(s) without using the mouse.

06.23 Organize Using Statements (C# Only)

WInDOWS Alt,E, I, [R (remove), U (sort), A (remove and sort)]

mEnu Edit | IntelliSense | Organize Usings | [Remove Unused Usings, Sort Usings, Remove and Sort]; Right
Click | Organize Usings | [Remove Unused Usings, Sort Usings, Remove and Sort]

COmmAnD EditorContextMenus .CodeWindow .OrganizeUsings .[RemoveUnusedUsings, SortUsings,
RemoveAndSort]

VERSIOnS 2008, 2010

lAnGuAGES C#

CODE vstipEdit0070

You can easily organize your using statements. Simply right-click anywhere in the editor to
get the context menu, choose Organize Usings, and then Remove, Sort, or Remove And Sort.

Remove Unused Usings
Before removing unused using directives, using aliases, and extern aliases, you should con-
sider a couple things about this feature.

First, it should be used only on code that builds, because it could remove required using
statements if activated on code that does not build. As shown in the following illustration,
you have an option in Visual Studio 2008 (not Visual Studio 2010), found at Tools | Options |
Text Editor | C# | Advanced | Organize Usings, that prevents you from removing using state-
ments if your code doesn’t build.

 Chapter 6 Writing Code 233

Second, it works only on the active set of code. For example, suppose you have a set of using
statements such as the following:

If you remove the unused using statements, you see the following result:

However, suppose those using statements are organized into code that has active and inac-
tive blocks:

When you perform the action to remove them, only the extra using statements in the active
block are removed:

Generally accepted reasons for removing unused using statements include the following:

●● Results in cleaner code

●● Significantly reduces the size of the IntelliSense list because there are fewer namespaces

●● Enables potentially faster compilation because the compiler has fewer namespaces to
resolve

●● Avoids potential naming collisions when new types are added to the unused namespac-
es that might have the same name as types you are currently using

234 06 .23 Organize Using Statements (C# Only)

Sort Usings
When you perform a sort action on your using statements, they sort in the following order:
extern aliases, using directives, using aliases. Also, by default, using statements that reference
the System namespace are sorted before the other using directives. So, suppose you have
some using statements such as the following:

When you sort them, you get the result shown in the following illustration.

Notice that the Microsoft namespace is below all the System namespaces. If you don’t like
this behavior, you can change it by going to Tools | Options | Text Editor | C# | Advanced |
Organize Usings and clearing the Place ‘System’ Directives First When Sorting Usings check
box.

Now, when you sort, you see the following result:

Remove and Sort
When you click the Remove And Sort command, it first performs a remove operation and
then it performs a sort operation.

 Chapter 6 Writing Code 235

06.24 Switch Between Design and Source in Web Projects

DEFAulT Shift+F7 (view designer and view markup toggle)

VISuAl BASIC 6 Shift+F7 (view designer and view markup toggle)

VISuAl C# 2005 Shift+F7 (view designer and view markup toggle)

VISuAl C++ 2 Shift+F7 (view designer and view markup toggle)

VISuAl C++ 6 Shift+F7 (view designer and view markup toggle)

VISuAl STuDIO 6 Shift+F7 (view designer and view markup toggle)

WInDOWS Alt,V, D (view designer); Alt, V, K (view markup)

mEnu View | Designer; View | Markup

COmmAnD View .ViewDesigner; View .ViewMarkup

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0045

When working with web projects, you can switch between Design and Source (Markup) views
quite easily.

In any view, simply press Shift+F7 to switch to the other view. In other words, you can press
Shift+F7 as a toggle between views.

Split View
This keyboard shortcut does not work the way you might think in Split view.

Pressing Shift+F7 takes you to either the Design or Source view (depending on which one
you were in last) and does not return to Split view when you press Shift+F7 again.

236 06 .25 Toggle Designer

06.25 Toggle Designer

DEFAulT F7 (view designer); F7 (view code)

VISuAl BASIC 6 [no shortcut] (view designer); F7 (view code)

VISuAl C# 2005 [no shortcut] (view designer); F7 (view code)

VISuAl C++ 2 [no shortcut] (view designer); F7 (view code)

VISuAl C++ 6 [no shortcut] (view designer); F7 (view code)

VISuAl STuDIO 6 [no shortcut] (view designer); F7 (view code)

WInDOWS Alt,V, D (view designer); Alt,V, C (view code)

mEnu View | Designer; View | Code

COmmAnD View .ToggleDesigner; View .ViewCode

VERSIOnS 2005, 2008, 2010

CODE vstipEnv0044

You often find that there is a need to switch from Design view (web, windows, or WPF) to
code. You can use F7 to go from the current Source or Design view to the Code view.

To go back, just press F7 again. It’s a toggle, so it jumps back and forth between the views.

In WPF applications, you can use F7 to view code but not to go back to Design view, so it
isn’t a full toggle operation in that scenario.

06.26 Change the Default View in the HTML Editor

WInDOWS Alt,T, O

mEnu Tools | Options | HTML Designer | General

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0088

The default view when you use the HTML Designer is Source view.

If you don’t like this or just want another view to be the default, you can go to Tools |
Options | HTML Designer | General and choose a new view in the Start Pages In area.

 Chapter 6 Writing Code 237

Note In Visual Studio 2005, you don’t have the Split View option.

06.27 Jump Back to the Editor from Just About Anywhere

DEFAulT Esc

VISuAl BASIC 6 Esc

VISuAl C# 2005 Esc

VISuAl C++ 2 Esc

VISuAl C++ 6 Esc; Alt+0

VISuAl STuDIO 6 Esc

WInDOWS [no shortcut]

COmmAnD Window .ActivateDocumentWindow

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0066

Did you know that you can usually get to the active document window by just pressing
Esc? For example, if you are in any tool window (like the Output window) and you press Esc,
you go back to the active document window.

You might have to press Esc multiple times, depending on the situation, but it should almost
always wind up at the active document window.

06.28 Replacing Text with a Box Selection

DEFAulT Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl BASIC 6 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C# 2005 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C++ 2 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C++ 6 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl STuDIO 6 Shift+Alt+[Up, Down, Left, Right] Arrow

WInDOWS [no shortcut]

COmmAnD Edit .Line[Up, Down]ExtendColumn; Edit .Char[Left, Right]ExtendColumn

VERSIOnS 2010

CODE vstipEdit0006

You have been able to select a block of text for some time in Visual Studio by holding down
the Alt+Shift+Arrow keys (or Alt+Left Mouse Button) and making a selection. In Visual Studio
2010, you can now do multiline replacements of a box selection.

238 06 .29 Pasting the Contents of One Box Selection into Another

Simply select a block of text:

Now type your replacement text:

The Editor turns your box selection into a zero-length box selection (a multiline cursor) that
you can use to type in what you like.

06.29 Pasting the Contents of One Box Selection into Another

DEFAulT Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl BASIC 6 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C# 2005 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C++ 2 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C++ 6 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl STuDIO 6 Shift+Alt+[Up, Down, Left, Right] Arrow

WInDOWS [no shortcut]

COmmAnD Edit .Line[Up, Down]ExtendColumn; Edit .Char[Left, Right]ExtendColumn

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0007

Box selection is a powerful tool that is often overlooked. One of the things you can do, for
example, is paste one box selection into another of the same size. Let’s assume you have the
following code:

However, you want the first set of variables to be the same data types as the second set (and
in the same order). Simply box select (Alt+Left Mouse Button) the second set of data types,
and then copy the selection (Ctrl+C).

 Chapter 6 Writing Code 239

Next, select the first set of data types (Alt+Left Mouse Button):

And paste (Ctrl+V):

06.30 Pasting a Single Selection into a Box Selection

DEFAulT Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl BASIC 6 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C# 2005 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C++ 2 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C++ 6 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl STuDIO 6 Shift+Alt+[Up, Down, Left, Right] Arrow

WInDOWS [no shortcut]

COmmAnD Edit .Line[Up, Down]ExtendColumn; Edit .Char[Left, Right]ExtendColumn

VERSIOnS 2010

CODE vstipEdit0008

In this tip, we see how to take a single selection and put it into a box selection. Let’s assume
you have the following code:

240 06 .31 Using Zero-Length Box Selection

But you realize that you need change all the ints to doubles.

Select the double keyword and copy it (Ctrl+C):

Then box select the destination (Alt+left mouse button):

Finally, do a paste (Ctrl+V) to see the following result:

06.31 Using Zero-Length Box Selection

DEFAulT Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl BASIC 6 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C# 2005 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C++ 2 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl C++ 6 Shift+Alt+[Up, Down, Left, Right] Arrow

VISuAl STuDIO 6 Shift+Alt+[Up, Down, Left, Right] Arrow

WInDOWS [no shortcut]

COmmAnD Edit .Line[Up, Down]ExtendColumn; Edit .Char[Left, Right]ExtendColumn

VERSIOnS 2010

CODE vstipEdit0009

The power of box selection is even more powerful with the new zero-length box selection.
Let’s assume that you have a situation with some variables, like the ones shown in the follow-
ing illustration, and you want to make them all public.

 Chapter 6 Writing Code 241

The answer is a zero-length box selection. Hold down your Alt key, and use your Down Arrow
key to extend straight down. A line is created, as shown in the following illustration.

Release the keys, and now just start typing.

This feature acts just like any cursor, so you can go forward and backward at will, plus you
can put one of these anywhere you want to create or edit multiple lines of text.

06.32 View White Space

DEFAulT Ctrl+R, Ctrl+W

VISuAl BASIC 6 [no shortcut]

VISuAl C# 2005 Ctrl+R, Ctrl+W; Ctrl+E, Ctrl+S; Ctrl+E, S

VISuAl C++ 2 Ctrl+R, Ctrl+W; Ctrl+Alt+T

VISuAl C++ 6 Ctrl+R, Ctrl+W; Ctrl+Shift+8

VISuAl STuDIO 6 Ctrl+R, Ctrl+W

WInDOWS Alt,E, V, W

mEnu Edit | Advanced | View White Space

COmmAnD Edit .ViewWhiteSpace

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0043

242 06 .33 Collapsing Your Code with Outlining

Ever want to see the white space you are working with? Maybe you want to know whether
you have tabs or extra spaces on lines? It’s easy to find out. Just go to Edit | Advanced | View
White Space (Ctrl+R, Ctrl+W).

Spaces are represented as dots, and tabs are the arrows you see in the preceding illustration.

06.33 Collapsing Your Code with Outlining

DEFAulT Ctrl+M, Ctrl+M

VISuAl BASIC 6 Ctrl+M, Ctrl+M

VISuAl C# 2005 Ctrl+M, Ctrl+M;
Ctrl+M, M

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 [no shortcut]

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt, E, O, T

mEnu Edit | Outlining | Toggle Outlining Expansion

COmmAnD Edit .ToggleOutliningExpansion

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0029

By default, outlining is enabled in Visual Studio. It’s the line you see with the boxes to indi-
cate the status of the area (collapsed or expanded):

You can collapse code to get it out of your way so that you can focus on other areas. You
have four ways to do it.

 Chapter 6 Writing Code 243

Minus Sign
Click the minus sign to collapse an area of code.

Note Visual Studio 2010, if Visual Experience is turned on in Tools | Options | Environment |
General, now highlights the area that will be collapsed. If you don’t like the highlighting color,
you can go to Tools | Options | Environment | Fonts and Colors and change the color for the
Collapsible Region setting.

Vertical Line
In Visual Studio 2010 only, click anywhere on the vertical line in the highlighted region.

Click Anywhere in Area (Keyboard Shortcut)
Click anywhere in the area to be collapsed, and press Ctrl+M, Ctrl+M.

Click Anywhere in Area (Menu Item)
Click anywhere in the area to be collapsed, and go to Edit | Outlining | Toggle Outlining
Expansion on the menu bar.

After collapsing, the code area looks like this:

244 06 .34 Using Hide Selection

06.34 Using Hide Selection

DEFAulT Ctrl+M, Ctrl+H

VISuAl BASIC 6 Ctrl+M, Ctrl+H

VISuAl C# 2005 Ctrl+M, Ctrl+H

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+M, Ctrl+H

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt, E, O, H

mEnu Edit | Outlining | Hide Selection

COmmAnD Edit .HideSelection

VERSIOnS 2005 (C++ Only), 2008 (C++ Only), 2010

CODE vstipEdit0036

Let’s say you have a chunk of code such as the following:

Outlining allows you to collapse only the entire method by default (minus sign in the upper-
left corner of the preceding illustration). What if you want to collapse only the if statements
at the top? First, select the chunk of code you want to hide.

Note You don’t have to select entire lines for this feature to work. Just select as much or as little
as you want to hide.

 Chapter 6 Writing Code 245

Now either press Ctrl+M, Ctrl+H or go to Edit | Outlining | Hide Selection on your menu bar.

You have successfully collapsed a selected region of code. Now you can expand and collapse
the area as long as you like. Also, if you ever want to get rid of the new region, just press
Ctrl+M, Ctrl+U or go to Edit | Outlining | Stop Hiding Current to remove the region.

246 06 .35 Collapse to Definitions with Outlining

06.35 Collapse to Definitions with Outlining

DEFAulT Ctrl+M, Ctrl+O

VISuAl BASIC 6 Ctrl+M, Ctrl+O

VISuAl C# 2005 Ctrl+M, Ctrl+O; Ctrl+M, O

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+M, Ctrl+O

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt, E, O, O

mEnu Edit | Outlining | Collapse to Definitions

COmmAnD Edit .CollapsetoDefinitions

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0032

One of the features of outlining is the Collapse To Definitions option. This feature collapses
the areas for all members. Let’s suppose you have the following code:

You can press Ctrl+M, Ctrl+O, or you can go to Edit | Outlining | Collapse To Definitions on
your menu bar to see the following result:

 Chapter 6 Writing Code 247

06.36 Cut, Copy, and Paste Collapsed Code with Outlining

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0035

When working with outlining, you can perform many timesaving operations. One of these is
the ability to take a piece of code and work with it in a collapsed state.

When you collapse code using outlining (click the minus sign to the left of the signature), you
get the result shown in the following illustration.

Now we can select all of that code in one compact unit:

Then simply cut or copy the code, and paste it where you want.

248 06 .37 Understanding Word Wrap

06.37 Understanding Word Wrap

DEFAulT Ctrl+E, Ctrl+W

VISuAl BASIC 6 [no shortcut]

VISuAl C# 2005 Ctrl+E, Ctrl+W; Ctrl+E, W

VISuAl C++ 2 Ctrl+E, Ctrl+W

VISuAl C++ 6 Ctrl+E, Ctrl+W

VISuAl STuDIO 6 Ctrl+E, Ctrl+W

WInDOWS Alt, E, V, R

mEnu Edit | Advanced | Word Wrap;
Tools | Options | Text Editor | All Languages | General

COmmAnD Edit .ToggleWordWrap

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0022

You can turn on or off the word wrap feature by going to Tools | Options | Text Editor | All
Languages | General and selecting or clearing the Word Wrap check box.

Word wrap automatically makes sure that your text is always in the visible space. So if you
already have a lot of visible space, it probably doesn’t need to wrap.

But if you have less space and wrap is turned on, it wraps automatically, as shown in the fol-
lowing illustration.

And, naturally, if you have almost no space, it still makes sure all the text is in the visible
space.

 Chapter 6 Writing Code 249

The arrows on the far right of each line (see the preceding illustration) show that the lines
are being wrapped. This can be turned on or off by going to Tools | Options | Text Editor | All
Languages | General and checking the Show Visual Glyphs For Word Wrap check box.

06.38 Properties Window Keyboard Shortcuts

DEFAulT F4 (properties window); Shift+F4 (property pages)

VISuAl BASIC 6 F4 (properties window); Shift+F4 (property pages)

VISuAl C# 2005 F4 (properties window); Ctrl+W, Ctrl+P (properties window); Ctrl+W, P (properties window)

VISuAl C++ 2 Alt+Enter (properties window); Ctrl+W (properties window); [no shortcut] (property pages)

VISuAl C++ 6 Alt+Enter (properties window); [no shortcut] (property pages)

VISuAl STuDIO 6 F4 (properties window); Shift+F4 (property pages)

WInDOWS Alt,V, W (properties window); Alt,V, Y (property pages)

mEnu View | Properties; View | Property Pages

COmmAnD View .PropertiesWindow; View .PropertyPages

VERSIOnS 2005, 2008, 2010

CODE vstipTool0111

The Properties window allows you to view and change the design-time properties and events
of selected objects that are located in editors and designers. You can also use the Properties
window to edit and view file, project, and solution properties. The Properties window is avail-
able from the View menu.

For more information, see “Properties Window” on MSDN at http://msdn.microsoft.com/en-
us/library/ms171352.aspx.

http://msdn.microsoft.com/en-us/library/ms171352.aspx
http://msdn.microsoft.com/en-us/library/ms171352.aspx

250 06 .38 Properties Window Keyboard Shortcuts

Working with the Tool Window
The following table lists the keyboard shortcuts that you can use with the Properties window:

action shortcut

Open / Show F4 or Alt+Enter

Close Shift+Esc

Working with Categories

The following table lists the keyboard shortcuts that you can use when working with the cat-
egories in the Properties window:

Note The category needs to be selected as shown in the preceding illustration, using the Misc
category. You can use your Arrow keys to select the node.

action shortcut

Collapse Left Arrow or - (minus)

Expand Right Arrow or + (plus)

Show next set of properties Page Up

Show previous set of properties Page Down

Move to next item in list Down or Left Arrow

Move to previous item in list Up or Right Arrow

Move to first property Home

Move to last property End

 Chapter 6 Writing Code 251

Property Items

The following table lists the keyboard shortcuts that you can use when you are working with
individual items in the Properties window:

action shortcut

Cancel current changes Esc

Show drop-down list Alt+Down Arrow

Previous/next option in list Up / Down Arrow

Cut selection Ctrl+X

Copy selection Ctrl+C

Paste Ctrl+V

Undo Ctrl+Z

06.39 Document Outline: Web Projects

DEFAulT Ctrl+Alt+T

VISuAl BASIC 6 Ctrl+Alt+T

VISuAl C# 2005 Ctrl+Alt+T; Ctrl+W, Ctrl+U; Ctrl+W, U

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+Alt+D

VISuAl STuDIO 6 Ctrl+Alt+T

WInDOWS Alt,V, E, D

mEnu View | Other Windows | Document Outline

COmmAnD View .DocumentOutline

VERSIOnS 2005, 2008, 2010

lAnGuAGES C#, VB

CODE vstipTool0116

If you are working with web projects, you need to know about the Document Outline feature
(Ctrl+Alt+T). It can be used to do the following:

●● View the logical structure of your document.

●● Determine which elements are HTML elements and which ones are web server controls.

●● Navigate to specific elements, in Design view and in Source view.

If you are working in Source view, it shows you the body element and the child elements of
the head element, the page directive, and any script elements and code elements.

252 06 .39 Document Outline: Web Projects

I created a default web application in Visual Studio 2010, added a couple of server con-
trols, and switched to Source view. The following illustration shows what the Document
Outline looks like.

Notice that you can clearly distinguish between the HTML and server content (server content
has the little gears in them). It can also be used to select items in the Source.

In Design view, it essentially does the same thing and allows you to get a bird’s-eye view of
the layout and can be used to select controls.

 Chapter 6 Writing Code 253

If you have a scenario with many controls, this makes getting to specific items very easy.

Additionally, many people like to use this feature with Split view so that it can show both
Design and Source.

06.40 Inserting Code Snippets

DEFAulT Ctrl+K, Ctrl+X

VISuAl BASIC 6 Ctrl+K, Ctrl+X

VISuAl C# 2005 Ctrl+K, Ctrl+X; Ctrl+K, X

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+K, Ctrl+X

VISuAl STuDIO 6 Ctrl+K, Ctrl+X

WInDOWS Alt,E, I, I

mEnu Edit | IntelliSense | Insert Snippet

COmmAnD Edit .InsertSnippet

VERSIOnS 2005, 2008, 2010

lAnGuAGES C#, VB

CODE vstipEdit0051

Even though these have been around for a while, a lot of people still don’t fully understand
snippets. Let’s assume you are in the editor and you want to create an if statement. You can
type it out, but that would be the hard way. Why not just use a snippet? You have several
ways to do this.

Tab
Just type if, and press the Tab key twice.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

254 06 .40 Inserting Code Snippets

C#
The paper-like icon, shown in the following illustration, indicates that this is a snippet in C#.

VB
In VB, you don’t have the paper icon, but you do have a note in the tooltip that indicates this
is a snippet.

Warning Don’t be fooled by the #if directive. You want the if statement for this example.

Keyboard Shortcut and Context Menu
Press Ctrl+K, Ctrl+X or right-click and choose Insert Snippet, or go to Edit | IntelliSense | Insert
Snippet on the menu bar.

C#
First you see a prompt to insert the snippet, as shown in the following illustration.

Choose Visual C# from the list, and then press Enter.

 Chapter 6 Writing Code 255

Then type if, and press Enter.

VB
Similar to C#, you see a prompt to insert the snippet, but the path is different. From the list,
choose Code Patterns – If, For Each, Try Catch, Property, Etc, and then press Enter:

Then choose Conditionals And Loops, and press Enter:

256 06 .41 Surround with a Code Snippet

Finally, pick the if statement you want from the list:

Result
No matter which option you choose, the result is essentially the same. You can now type in
your condition and the rest of your logic.

06.41 Surround with a Code Snippet

DEFAulT Ctrl+K, Ctrl+S

VISuAl BASIC 6 Ctrl+K, Ctrl+S

VISuAl C# 2005 Ctrl+K, Ctrl+S; Ctrl+K, S

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+K, Ctrl+S

VISuAl STuDIO 6 Ctrl+K, Ctrl+S

WInDOWS Alt,E, I, S

mEnu Edit | IntelliSense | Surround With

COmmAnD Edit .SurroundWith

VERSIOnS 2005, 2008, 2010

lAnGuAGES C#

CODE vstipEdit0052

This is one that even people who know about snippets tend to forget. You can actually put a
snippet around existing code, assuming you have some code selected.

 Chapter 6 Writing Code 257

Just press Ctrl+K, Ctrl+S:

Then type the statement you want to surround the code with. In this case, let’s use an if
statement:

Press your Tab key once, and you see the result shown in the following illustration.

Now you can put in your condition and any additional logic you want.

258 06 .42 Using Code Snippets

06.42 Using Code Snippets

DEFAulT Ctrl+K, Ctrl+X

VISuAl BASIC 6 Ctrl+K, Ctrl+X

VISuAl C# 2005 Ctrl+K, Ctrl+X; Ctrl+K, X

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+K, Ctrl+X

VISuAl STuDIO 6 Ctrl+K, Ctrl+X

WInDOWS Alt,E, I, I

mEnu Edit | IntelliSense | Insert Snippet

COmmAnD Edit .InsertSnippet

VERSIOnS 2005, 2008, 2010

lAnGuAGES C#, VB

CODE vstipEdit0053

I thought it would be a good idea to review how to use snippets. This example uses tags in
ASP.NET, but the concepts apply across the board to all snippets.

Let’s say you are in an ASP.NET application and you start to type an anchor tag, as shown in
the following illustration.

You press Tab twice to insert a snippet and see the following result:

Snippets have special areas that you can change the values in by pressing Tab to cycle
through them. For example, the following snippet has two special areas. Let’s put in a URL:

Now press Tab to go to the next area, and type in some text as shown in the following
illustration.

 Chapter 6 Writing Code 259

You can keep pressing Tab to toggle between these two locations as much as you want.
When you are done, you can press Enter to put the cursor at the end of the element and
continue typing more code.

So, in a nutshell, that’s how to work with snippets. They take a little getting used to, but they
are great timesavers.

06.43 HTML Code Snippets

DEFAulT Ctrl+K, Ctrl+X

VISuAl BASIC 6 Ctrl+K, Ctrl+X

VISuAl C# 2005 Ctrl+K, Ctrl+X; Ctrl+K, X

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+K, Ctrl+X

VISuAl STuDIO 6 Ctrl+K, Ctrl+X

WInDOWS Alt,E, I, I

mEnu Edit | IntelliSense | Insert Snippet

COmmAnD Edit .InsertSnippet

VERSIOnS 2010

CODE vstipEdit0018

You might have used code snippets for a while now, but did you know that Visual Studio
2010 has added support for HTML snippets?

From any webpage, go to Edit | IntelliSense | Insert Snippet on the menu bar (Ctrl+K, Ctrl+X).
You should see the Insert Snippet prompt:

Next, choose your category and the specific snippet you want:

260 06 .44 JavaScript Code Snippets

Type in the details, pressing Tab if there are multiple areas where you need to put in details.

Press Enter when you are done, and continue putting in your code.

Note This is the long way to insert a snippet the quicker way, in most cases, is to just start typ-
ing an element and hit tab twice to insert the snippet for that element.

06.44 JavaScript Code Snippets

DEFAulT Ctrl+K, Ctrl+B

VISuAl BASIC 6 Ctrl+K, Ctrl+B

VISuAl C# 2005 Ctrl+K, Ctrl+B

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+K, Ctrl+B

VISuAl STuDIO 6 Ctrl+K, Ctrl+B

WInDOWS Alt,E, I, I

mEnu Edit | IntelliSense | Insert Snippet

COmmAnD Edit .InsertSnippet

VERSIOnS 2010

CODE vstipEdit19

Want to get that JavaScript code created more quickly? Use JavaScript snippets.

When you are inside any script block, go to Edit | IntelliSense | Insert Snippet on the menu
bar (Ctrl+K, Ctrl+X), choose the JScript category, as shown in the following illustration, and
then press Tab.

Now pick what you want to do, and then press Tab again.

 Chapter 6 Writing Code 261

Now fill in any details, pressing Tab to cycle between details if needed.

Then press Enter when you are done, and keep typing your code.

06.45 Using the Code Snippets Manager

DEFAulT Ctrl+K, Ctrl+B

VISuAl C++ 2 [no shortcut]

WInDOWS Alt,T, T

mEnu Tools | Code Snippets Manager

COmmAnD Tools .CodeSnippetsManager

VERSIOnS 2005, 2008, 2010

CODE vstipTool0015

Ever wonder where you can get a list of code snippets just to browse? The Code Snippets
Manager is your friend. Start by pressing Ctrl+K, Ctrl+B to see the following dialog box.

262 06 .45 Using the Code Snippets Manager

The first thing you need to do is pick the language you want to browse through. Go ahead
and choose Visual Basic for this example. This action gives you several folders (categories)
to choose from. Let’s choose the Application – Compiling, Resources, And Settings folder, as
shown in the following illustration.

From here, you can browse individual snippets and put your mouse over each of them to get
the full description:

 Chapter 6 Writing Code 263

Click the Change The Foreground And Background Colors In A Console Window snippet.
Notice that summary information about the snippet is provided:

To use this snippet, you have to copy the shortcut name, “appChanCol” in this case. Now click
OK or Cancel to close the dialog box, and paste your shortcut name into the editor.

Finally, press Tab twice to get the results shown in the following illustration.

Note Technically, you have to press Tab only once in this case, but pressing it twice preserves
muscle memory for the snippets and has no downside.

But what about the buttons in the Code Snippet Manager we didn’t talk about?

264 06 .46 Insert Quotes When Typing Attribute Values

Following are quick descriptions of what they do.

●● Add—Lets you pick a folder to add to the current list of folders for snippets. The folder
can be any accessible location, including network drives. This is useful for shared snip-
pets among team members where everyone uses snippets on a shared drive.

●● Remove—Takes a folder out of the list but does not physically delete the folder.

●● Import—Used for including individual .snippet files in the folder you are currently
viewing.

06.46 Insert Quotes When Typing Attribute Values

WInDOWS Alt,T, O

mEnu Tools | Options

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0082

One of the more annoying things about web development in Visual Studio is that when you
type in attributes it doesn’t include the quotes automatically.

You can have quotes included automatically when you type in attributes if you go to Tools |
Options | Text Editor | HTML | Formatting and select Insert Attribute Value Quotes When
Typing:

From now on, you will see the quotes when you type in the attributes:

 Chapter 6 Writing Code 265

06.47 Format the Current Document or Selection (Web)

DEFAulT Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection)

VISuAl BASIC 6 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection)

VISuAl C# 2005 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+E (document); Ctrl+K, E (document); Ctrl+K, Ctrl+F
(selection); Ctrl+E, Ctrl+F (selection); Ctrl+E, F (selection)

VISuAl C++ 2 [no shortcut] (document); Ctrl+Shift+F (selection); Ctrl+Alt+I (selection)

VISuAl C++ 6 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection); Alt+F8 (selection)

VISuAl STuDIO 6 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection); Alt+F8 (selection)

WInDOWS Alt,E, V, A (document); Alt,E, V, F (selection)

mEnu Edit | Advanced | Format Document; Edit | Advanced | Format Selection

COmmAnD Edit .FormatDocument; Edit .FormatSelection

VERSIOnS 2008, 2010

CODE vstipEdit0089

In vstipEdit0057 (“Format the Current Document or Selection,” in Appendix B [http://
go.microsoft.com/FWLink/?Linkid=223758]), I showed you how to format code. I thought it would
be a good idea to look at the same task from a web project perspective. Let’s say you have
the following HTML:

Warning You need to have spaces around the <DIV> tags, as I have shown here, or the format-
ting will not work correctly.

But you want to clean it up a bit. Just select everything you want formatted, right-click, and
choose Format Selection (Ctrl+K, Ctrl+F), as shown in the following illustration.

You see the following result:

The formatting rules that govern this operation can be found at Tools | Options | Text Editor |
HTML | Formatting. You can also format the entire document by going to Edit | Advanced |
Format Document or using the shortcut Ctrl+K, Ctrl+D.

266 06 .48 Using the Navigation Bar

06.48 Using the Navigation Bar

DEFAulT Ctrl+F2 (navigation bar);
Tab (move between Objects and Members drop-down lists)

VISuAl BASIC 6 Ctrl+F2 (navigation bar);
Tab (move between Objects and Members drop-down lists)

VISuAl C# 2005 Ctrl+F2 (navigation bar);
Tab (move between Objects and Members drop-down lists)

VISuAl C++ 2 Ctrl+F2 (navigation bar);
Tab (move between Objects and Members drop-down lists)

VISuAl C++ 6 Ctrl+F8 (navigation bar);Tab (move between Objects and Members drop-down
lists)

VISuAl STuDIO 6 Ctrl+F2 (navigation bar);
Tab (move between Objects and Members drop-down lists)

WInDOWS [no shortcut]

COmmAnD Window .MovetoNavigationBar

VERSIOnS 2005, 2008, 2010

CODE vstipTool0026

Ever notice the two drop-down lists just below the file tab channel? The one on the left is the
Objects list (classes and objects), and the one on the right is the Members list.

You probably don’t have much use for the Objects list unless you have a lot of classes in one
file. The Members list is extremely useful when you want to jump around in your code. If you
have a class with several functions, you can click the Members list to see them all:

Now you can just click a member to instantly go to that section in your code.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 6 Writing Code 267

06.49 HTML Editor Tag Navigation

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0091

According to the documentation, “the tag navigator is a representation of the element that
is currently selected in the document, along with the hierarchy of parent tags to which it
belongs.”

For more detailed information, see the topic “HTML Editor Tag Navigation in Visual Web
Developer” at http://msdn.microsoft.com/en-us/library/b53y76zk.aspx.

The tag navigator is particularly useful for working with deeply nested structures such as
tables within tables. You can use the tag navigator to determine which element in the docu-
ment has the focus.

In addition, you can use the tag navigator to move from the current element to an element
that is located higher in the current hierarchy:

Note The tag navigator does not display all of the elements in the current document. Instead, it
shows the path from the current element to the outermost parent. For information about how to
see all of the elements in the document, see vstipTool0116 (“Document Outline: Web Projects,”
page 251).

06.50 Format HTML on Paste

WInDOWS Alt,T, O

mEnu Tools | Options Text Editor | HTML | Miscellaneous

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0092

http://msdn.microsoft.com/en-us/library/b53y76zk.aspx

268 06 .51 Display HTML/CSS Warnings as Errors

If you find yourself copying and pasting unformatted HTML a lot, this tip is for you. Just go to
Tools | Options | Text Editor | HTML | Miscellaneous, and select Format HTML On Paste.

From now on, when you paste it, your HTML is formatted according to the rules set up in
Tools | Options | Text Editor | HTML | Formatting.

06.51 Display HTML/CSS Warnings as Errors

WInDOWS Alt,T, O

mEnu Tools | Options Text Editor | HTML | Validation

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0084

Normally, HTML and CSS syntax problems show up as warnings (green squiggles):

These syntax problems also show up as warnings in the Error List window:

This means that you can build and run the application if you choose to ignore the warnings.
Or you can have them show up as errors instead, by going to Tools | Options | Text Editor |
HTML | Validation and clearing the As Warnings check box.

 Chapter 6 Writing Code 269

Now the green squiggles will be red:

The previous warnings now show up as errors in the Error List window and you are notified
when you try to build that a problem exists.

06.52 Updating JScript IntelliSense

DEFAulT Ctrl+Shift+J

WInDOWS Alt,E, I, J

mEnu Edit | IntelliSense | Update JScript IntelliSense

COmmAnD Edit .UpdateJScriptIntellisense

VERSIOnS 2008, 2010

CODE vstipEdit0086

If you find that your IntelliSense isn’t showing for JScript items you recently put in, you can
update the JScript IntelliSense by going to Edit | IntelliSense | Update JScript IntelliSense or
pressing Ctrl+Shift+J.

It goes by quickly, but you might see the “Updating JScript IntelliSense” message in the Status
Bar at the lower-left corner of your screen.

When it is done, you should be able to see the newly added items.

270 06 .53 Using JScript Libraries in Other JScript Files

06.53 Using JScript Libraries in Other JScript Files

VERSIOnS 2008, 2010

CODE vstipProj0025

When you want to use your own custom JScript library, it’s a very straightforward process.
You just click and drag the file from Solution Explorer into your web page.

Then start using the library:

But what if you want to use the library in another JScript file? No problem. To have one file
used by another, just click and drag the file name from the resource file into the consuming
file.

 Chapter 6 Writing Code 271

When you do, it makes a reference automatically:

And you can start using it right away with IntelliSense now aware of the resource contents:

06.54 Create New Code Snippets from Existing Ones

DEFAulT Ctrl+K, Ctrl+B

VISuAl BASIC 6 Ctrl+K, Ctrl+B

VISuAl C# 2005 Ctrl+K, Ctrl+B

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+K, Ctrl+B

VISuAl STuDIO 6 Ctrl+K, Ctrl+B

WInDOWS Alt,T, T

mEnu Tools | Code Snippets Manager

COmmAnD Tools .CodeSnippetsManager

VERSIOnS 2005, 2008, 2010

CODE vstipTool0016

When you use snippets, you often need to change the default values. Naturally, you can
modify the values after the snippet is used. But what if you want to permanently change the
value and make a new snippet out of it?

First, figure out which snippet you want to modify by finding it in the Code Snippets
Manager (see vstipTool0015, “Using the Code Snippets Manager,” in Appendix B [http://
go.microsoft.com/FWLink/?Linkid=223758]). In this case, let’s modify the If..End If snippet for
Visual Basic.

272 06 .54 Create New Code Snippets from Existing Ones

What you are after is the location of the snippet. See the path under Location in the follow-
ing illustration. Select the path in the dialog box and Copy it (Ctrl+C).

Now, go to File | Open | File, paste in the file path, and click Open.

 Chapter 6 Writing Code 273

This next part is really just to make sure we don’t modify the original snippet. As you gain
more experience doing modifications, you might choose to change the original, but for now,
you want to make sure you can keep your existing set of snippets intact. Go to File | Save
IfEndifStatement.snippet As:

Now just save the file with the original file name and your initials appended to the end.

You are ready to modify the snippet. Start with the header information:

274 06 .54 Create New Code Snippets from Existing Ones

For now, just change the Title and Shortcut to include your initials:

Note The key here is the shortcut name. It is the name you will use most often to invoke this
snippet so make it something that makes sense.

Because you are here to change the default value as well, locate the Default tag:

Change “True” to “False,” and then save the file and close it.

You are ready to use your new snippet. Go into your code, type in your new snippet shortcut,
and press Tab (once or twice, both work the same).

And you get the following result:

You now have a new snippet you can use. You can verify this by going back into the Code
Snippets Manager (Ctrl+K, Ctrl+B) and finding your snippet in the list.

 Chapter 6 Writing Code 275

06.55 Understanding the Navigation Stack

DEFAulT Ctrl+Shift+8 (back); Ctrl+Shift+7 (forward)

VISuAl BASIC 6 [no shortcut] (back); Ctrl+Shift+7 (forward)

VISuAl C# 2005 Ctrl+Shift+8 (back); Ctrl+Shift+7 (forward)

VISuAl C++ 2 Ctrl+Shift+8 (back); Ctrl+Num * (back); Ctrl+Shift+7 (forward)

VISuAl C++ 6 Ctrl+Num * (back); Ctrl+Shift+7 (forward)

VISuAl STuDIO 6 Ctrl+Shift+8 (back); Ctrl+Shift+7 (forward)

WInDOWS [no shortcut]

COmmAnD View .PopBrowseContext; View .ForwardBrowseContext

VERSIOnS 2005, 2008, 2010

lAnGuAGES C++, C#

CODE vstipEdit0078

Did you know that a dedicated stack is available to you, just for going to definitions? Let’s
look at a couple of examples.

Suppose you are looking at a method call, as shown in the following illustration.

You can press F12 to go to its definition:

How do you go back? Just press Ctrl+Shift+8, and it takes you back:

Pressing Ctrl+Shift+7 moves you to the definition again.

So what’s going on? Well, every time you go to a definition it keeps track of where you come
from. This works every time you go to definition so that you can always find your way back.
The following illustrations show another example.

276 06 .55 Understanding the Navigation Stack

Press F12 (go to definition):

From here, you could press Ctrl+Shift+8 to go back. But what if you want to keep digging
into definitions? In this example, let’s say you’ve clicked in the GetNumber method:

Now press F12:

Now, if you want to go back, press Ctrl+Shift+8:

Then press Ctrl+Shift+8 again:

 Chapter 6 Writing Code 277

06.56 Navigate Backward and Navigate Forward Using Go Back Markers

DEFAulT Ctrl+- (back); Ctrl+Shift+- (forward)

VISuAl BASIC 6 Ctrl+- (back); Ctrl+Shift+F2 (back); Ctrl+Shift+- (forward)

VISuAl C# 2005 Ctrl+- (back); Ctrl+Shift+- (forward)

VISuAl C++ 2 Ctrl+- (back); Ctrl+Shift+- (forward)

VISuAl C++ 6 Ctrl+- (back); Ctrl+Shift+- (forward)

VISuAl STuDIO 6 Ctrl+- (back); Ctrl+Shift+- (forward)

WInDOWS Alt,V, B (back); Alt,V, F (forward)

mEnu View | Navigate Backward; View | Navigate Forward

COmmAnD View .NavigateBackward; View .NavigateForward

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0024

If you move in a single command more than several lines away from where you are currently
working or if you edit in a particular location that is not adjacent to the last place you edited,
the editor remembers locations. It does this by creating Go Back markers based on specific
conditions. The goal is to remember interesting locations so that you can recall where you
have been working without remembering so many locations that the feature is not useful
(such as every character typed, or every line entering several new lines of code one right after
the other).

A Go Back marker is dropped under the following conditions:

●● An incremental search (including reverse) leaves a Go Back marker at the beginning of
the search and another one at the end.

●● A Go To Line action, like Ctrl+G, or a mouse-click that moves the cursor 11 lines or
more from the current position drops a Go Back marker at the new location.

●● A destructive action (like pressing backspace) after having moved the cursor to a new
location drops a Go Back marker.

●● Doing a search, like Ctrl+F, drops a Go Back marker at the found location.

●● Opening a file drops a Go Back marker wherever the cursor was on the old file and
drops another on the opened file.

That now brings us to the navigation buttons on the Standard Toolbar (and keyboard short-
cuts, too). These gems make travelling around your code much, much easier:

278 06 .57 Select from the Current Cursor Location to the Last Go Back Marker

You can use the buttons to quickly navigate among the Go Back markers that have been
dropped throughout Visual Studio. To quickly look at the list of places you can go, just click
the drop-down arrow for the back button.

Note The navigation buttons in the Standard Toolbar are on the upper-left of the image below.

06.57 Select from the Current Cursor Location to the Last Go Back Marker

DEFAulT Ctrl+=

VISuAl BASIC 6 Ctrl+=

VISuAl C# 2005 Ctrl+=

VISuAl C++ 2 Ctrl+=

VISuAl C++ 6 Ctrl+=

VISuAl STuDIO 6 Ctrl+=

WInDOWS [no shortcut]

COmmAnD Edit .SelectToLastGoBack

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0069

In vstipEdit0024 (“Navigate Backward and Navigate Forward Using Go Back Markers,” on
page 277), we defined Go Back markers. In this tip, we look at how they can be useful for se-
lecting text. Let’s say you are writing some code and want to quickly select a chunk of text. In
the following illustration, the cursor is at your starting location (line 15).

 Chapter 6 Writing Code 279

You click on a new location (line 27), which results in a Go Back marker (which you can’t see)
being placed at the starting location (line 15).

Now we have the Go Back marker at the beginning of line 15 and the current cursor location
at the end of line 27. In this case, you had to jump at least 11 lines to get your Go Back mark-
er. To select from the current cursor location to the last Go Back marker, just press Ctrl+= and
watch the magic happen.

280 06 .58 Track Changes in the Editor

06.58 Track Changes in the Editor

WInDOWS Alt,T, O

mEnu Tools | Options | Text Editor | General

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0048

To use this feature, you need to go to Tools | Options | Text Editor | General and have Track
Changes and Selection Margin checked.

Ever wonder how the colored lines to the left of your code (by the line numbers) actually
work?

Let’s begin with a clean slate.

Let’s add a couple of lines of code, and now we see two vertical yellow (you’ll have to trust
me on the colors) lines to the left of lines 14 and 15:

 Chapter 6 Writing Code 281

All new code will have a yellow line to show you what part of the document is unsaved. If we
save the code, the yellow lines turn green to indicate code that has been saved.

The saved indicator remains as long as you have the file open. When you close and reopen
the file, the line goes away:

In Visual Studio 2010, an orange indicator shows a change that is different from the saved
version. This was added for the scenario where a user does an undo after saving the changes.

You can use the following grid to help keep the colors straight.

marker different from file
saved on disk?

different from file that
was opened?

Nothing No No

Yellow Yes Yes

Green No Yes

Orange Yes No

06.59 Edit Read-Only Files

WInDOWS Alt,T, O

mEnu Tools | Options | Environment | Documents

COmmAnD Tools .Options

VERSIOnS 2008, 2010

CODE vstipEdit0074

282 06 .59 Edit Read-Only Files

When you open a read-only document, you get an indicator that looks like a tiny lock on the
file tab:

If you make changes and try to save them, you are (by default) met with the Save Of Read-
Only File dialog box.

At this point, you can save your changes as another copy of the file, overwrite the existing
file, or cancel. If you don’t like these options, you can turn this feature off by going to Tools |
Options | Environment | Documents and clear the Allow Editing Of Read-Only Files; Warn
When Attempt To Save check box.

Now if you attempt to make any changes to a read-only file, you see the Edit of Read-Only
File dialog box.

 Chapter 6 Writing Code 283

Edit In-Memory
Allows you to make edits and then display the Save Of Read-Only File dialog box when you
save changes.

Make Writable
If possible, turns off the read-only attribute of the file so that it can be edited.

06.60 Choosing CSS Versions

WInDOWS Alt,T, O

mEnu Tools | Options Text Editor | HTML | Validation (HTML Schema)

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010, 2010 SP1

CODE vstipEdit0093

When working with Cascading Style Sheets (CSS), you often find yourself working with spe-
cific versions. In this tip, we look at how to set your CSS version for dedicated and embedded
styles.

Note Visual Studio 2010 Service Pack 1 added limited support for HTML5 and CSS3. For more
information, see http://blogs.msdn.com/b/zainnab/archive/2011/04/12/vs2010-sp1-new-features-
html-5-and-css-3-support.aspx.

Dedicated Style Sheets
When you create a CSS file in Visual Studio, you can choose the version you want by selecting
it from the Cascading Style Sheet Version For Validation drop-down list on the Style Sheet
Toolbar:

Note CSS3 doesn’t show up in this list even after you install Visual Studio 2010 Service Pack 1.

http://blogs.msdn.com/b/zainnab/archive/2011/04/12/vs2010-sp1-new-features-html-5-and-css-3-support.aspx
http://blogs.msdn.com/b/zainnab/archive/2011/04/12/vs2010-sp1-new-features-html-5-and-css-3-support.aspx

284 06 .60 Choosing CSS Versions

Embedded Styles
It is recommended that you use dedicated style sheets; however, you might find that you
want to embed styles in your HTML source.

When you do this, it might not be clear how you select the CSS version. Most people think
it is the same as the version chosen for dedicated CSS files. This is not the case. It’s bound
to the choice you make in the Target Schema For Validation drop-down list located on the
HTML Source Editing Toolbar or at Tools | Options | Text Editor | HTML | Validation (HTML
Schema).

The following table shows how the CSS version relates to the choices.

html schema css schema

Internet Explorer 6 .0 Internet Explorer 6 .0

HTML 4 .01 CSS 1 .0

XHTML 1 .0 Transitional CSS 2 .0

XHTML 1 .0 Frameset CSS 2 .0

XHTML 1 .1 CSS 2 .1

HTML5 (limited) CSS 3 .0 (limited)

XHTML5 (limited) CSS 3 .0 (limited)

Finally
You have many good reasons to use dedicated style sheets, but if you do find yourself doing
embedded CSS, make sure you understand which schema you are using based on your HTML
schema choices.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 6 Writing Code 285

06.61 Understanding Tag Specific Options

WInDOWS Alt,T, O

mEnu Tools | Options | Text Editor | HTML | Formatting

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipEdit0090

In vstipEdit0089 (“Format the Current Document or Selection HTML Designer,” on page 265),
I showed you how to use selection formatting on a sample.

Let’s say you don’t like the way <DIV> tags are formatted. You can go to Tools | Options |
Text Editor | HTML | Formatting and click the Tag Specific Options button.

Exploring the Tag Specific Options Dialog Box
This dialog box is somewhat complicated, so let’s go though it one area at a time. For refer-
ence, the following illustration provides a bird’s eye view to help us stay oriented as we go
along.

286 06 .61 Understanding Tag Specific Options

Tree view

Allows you to select either the individual tag to format or a class of tags. By default, the tree
contains the following nodes:

Default Settings

Expand this node to set default formatting options for a complete class of tags, such as all
server tags that support contents.

Client HTML Tags

Expand this node to set custom formatting options for HTML elements.

ASP .NET Controls

Expand this node to set custom formatting options for ASP.NET server controls.

New Tag

Use to define new tags that aren’t already listed.

New Folder

Create a new node on the tree for organizing custom tags.

 Chapter 6 Writing Code 287

Delete

Delete a tag or folder.

Note In the following examples, our working reference is the <DIV> tag from the Client HTML
Tags section of the Tag Specific Actions dialog box.

Per tag formatting

Per tag formatting works on a model with default settings for each tag. These settings pro-
vide the base rules by which the tag is formatted. The four categories of tags are as follows:

●● Client tags that do not support contents, such as

●● Client tags that support contents, such as <TABLE> or <H1>

●● Server tags that do not support contents, such as asp:CheckBox

●● Server tags that support contents, such as asp:Repeater

For each tag, the values from the appropriate category in the preceding list are used, unless
an override is specified for that tag. By default, some overrides are supplied based on the
common usage of the tags.

Closing tag

Indicates how the closing tag should look when automatically created.

Line breaks

Directs the formatting to place line breaks as specific points in the entire element.

288 06 .61 Understanding Tag Specific Options

Indent contents

Indents the contents for the element, if appropriate.

Preview

The absolute best way to see how the per-tag formatting is going to look is to use the
Preview area (bottom of the dialog box). It updates based on your choices so that you can
make informed decisions on the formatting. Unfortunately it does not show color choices
(described later).

Outlining in code editor

Enable outlining for tag

When outlining is enabled, the editor monitors the number of lines in the element and then
applies outlining to the tag when the element exceeds the specified line threshold. (The
editor does not automatically collapse the tag.) This feature is useful for collapsing long ele-
ments, such as large tables.

Note If outlining doesn’t show up as expected try closing and re-opening the file to make it
appear.

 Chapter 6 Writing Code 289

Minimum lines

Number of lines before outlining is enabled for the element.

Example: The <DIV> has outlining enabled and minimum lines set to three. For three lines or
more in an element, outlining, the minus sign to the left of the opening tag, is enabled for
that element:

Notice the outlining (the minus sign to the left of the opening <DIV> tag, shown in the pre-
ceding illustration) that has kicked in because we have the minimum number of lines. In this
example, if the minimum lines are changed to five, outlining is not enabled and no minus
sign appears:

Per tag colorization

Tag foreground

The color of the text for the tags.

Tag background

The color of the text background.

Bold

Makes the tags bold.

Finally
You can see that there is much to learn about tag-specific options. Take your time as you ex-
plore the possibilities in the Tag Specific Options dialog box.

 291

Chapter 7

Debugging

“It has been just so in all my inventions. The first step is an intuition—and comes with a
burst, then difficulties arise. This thing that gives out and then that—‘Bugs’ as such little
faults and difficulties are called show themselves and months of anxious watching, study
and labor are requisite before commercial success—or failure—is certainly reached.”

—Thomas Alva Edison
Letter to Theodore Puskas (18 Nov 1878)

As a developer, you spend a great deal of time debugging. Visual Studio has long provided
great tools for helping find errors in your code. This chapter focuses on showing how to take
full advantage of common items like the Locals and Autos windows as well as exploring more
advanced techniques such as setting tracepoints in the Call Stack window.

Additionally, lots of great new features in Visual Studio 2010 can help with your trouble-
shooting efforts. Major changes have been made to the Breakpoints window, and new
DataTips are available to provide information when and where you need it. There is no short-
age of great techniques to cut down the time you spend finding problems in your code.

07.01 Setting a Breakpoint with Code

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0036

Sometimes you want to have clear breakpoints in your code that travel with the source. You
can do this quite easily.

292 07 .01 Setting a Breakpoint with Code

Compiler Directive
In C# and VB, you need to set a compiler option that hits the breakpoint only when debug-
ging. If you don’t, your release code continues to hit the code-based breakpoint, which is
generally considered a bad thing. To do this, you set the #If DEBUG compiler option, as you
can see in each of the following code samples.

C#
In C#, you set a breakpoint by using the System.Diagnostics.Debugger.Break method:

VB
In VB, you set a breakpoint by using the Stop command:

Now you can use code to set breakpoints. Just as an aside, breakpoints set in this way do not
show up in the Breakpoints window.

C++
In C++, it’s a very similar situation. Based on the type of C++ project you are creating, these
commands can change slightly; but with native C++, you can use the __debugbreak com-
mand with the #if _DEBUG compiler option:

 Chapter 7 Debugging 293

07.02 Using Ctrl+Alt+B to Open the Breakpoints Window

DEFAulT Ctrl+Alt+B

VISuAl BASIC 6 Ctrl+Alt+B

VISuAl C# 2005 Ctrl+Alt+B; Ctrl+D, Ctrl+B; Ctrl+D, B

VISuAl C++ 2 Ctrl+Alt+B; Ctrl+B

VISuAl C++ 6 Ctrl+Alt+B; Alt+F9

VISuAl STuDIO 6 Ctrl+B

WInDOWS Alt, D, W, B

mEnu Debug | Windows | Breakpoints

COmmAnD Debug .Breakpoints

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0011

Use Ctrl+Alt+B to open the Breakpoints window or, if it is already open, to give it the focus.

07.03 Adding Labels to Breakpoints

DEFAulT Alt+F9, L

VISuAl BASIC 6 Alt+F9, L

VISuAl C# 2005 Alt+F9, L

VISuAl C++ 2 Alt+F9, L

VISuAl C++ 6 [no shortcut]

VISuAl STuDIO 6 Alt+F9, L

WInDOWS Shift+F10, A (inside Breakpoints Window)

mEnu [Context Menu] | Edit Labels

COmmAnD EditorContextMenus .CodeWindow .Breakpoint .BreakpointEditlabels

VERSIOnS 2010

CODE vstipDebug0001

Did you know that breakpoints in Visual Studio 2010 support labels? This tip explains how
you can use them. How do labels help you? Well, first, you can now have friendly names for
breakpoints to make them easier to understand. Second, you can sort by the label names.

294 07 .03 Adding Labels to Breakpoints

And, third, you can search the labels from the Breakpoints window. (See vstipDebug0002,
“Searching Breakpoints,” on page 312.)

After setting one or more breakpoints in your code, open the Breakpoint window
(Ctrl+Alt+B). Notice the new Labels column:

Right-click one or more selected breakpoints to bring up the context menu, and choose Edit
Labels (Alt+F9, L):

You get the following dialog box:

 Chapter 7 Debugging 295

You can type in one (or more) labels for the breakpoint and/or select one of the labels previ-
ously used, and then click OK. You should see now your label(s):

07.04 Enable or Disable All Breakpoints

WInDOWS Alt,D, N

mEnu Debug | Disable All Breakpoints; Debug | Enable All Breakpoints

COmmAnD Debug .DisableAllBreakpoints; Debug .EnableAllBreakpoints

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0018

There are times when you will want to quickly and temporarily turn off all or some of your
breakpoints. This tip covers how to disable and enable your breakpoints.

You can go to Debug | Disable All Breakpoints on the menu bar, or in the Breakpoints win-
dow, you can click the Enable Or Disable All Breakpoints button:

Note In Visual Studio 2010, only the breakpoints currently visible in the window are disabled
when you use this option, so it is very useful for enabling or disabling a subset of your break-
points when used with the Search feature.

The result, in either case, is the same. One or more breakpoints in the current project are
disabled:

To enable them again, just go to Debug | Enable All Breakpoints on the menu bar, or click the
Enable Or Disable All Breakpoints button in the Breakpoints window again:

296 07 .05 TODO Comments in the Task List

07.05 TODO Comments in the Task List

VERSIOnS 2005, 2008, 2010

CODE vstipTool0029

Have you ever written some code and want to leave a reminder to yourself to do something?
Did you know about the “To Do” comment feature? It is a great feature, and because the
comment goes directly in the source, everyone can have access to the information when you
check in code.

So here’s how it works.

VB
In VB, you just put any comment in that begins with “todo” (case doesn’t matter):

C#
In C#, it’s the same thing (again, case doesn’t matter):

C++
The C++ version looks just like C#, but you have to explicitly turn this feature on, and the
“TODO” must be all uppercase. Go to Tools | Options | Text Editor | C/C++ | Formatting |
Miscellaneous, and change Enumerate Comment Tasks to True:

 Chapter 7 Debugging 297

Whichever language you use, the result is a nice entry in your Task List dialog box:

Note To see these items, you have to click the drop-down list in the Task List dialog box and
choose Comments, as shown in the preceding illustration.

Like all Task List items, comments are Solution-wide in scope, so you will see all the shortcuts
for the entire solution in the Task List window.

07.06 Create Custom Tokens for the Task List

WInDOWS Alt,T, O

mEnu Tools | Options

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipTool0032

In vstipTool0029 (“TODO Comments in the Task List,” page 296), I showed you how to create
comments that show up in the Task List:

The “TODO” part is known as a token. It’s a trigger to indicate that an item should be put in
the Task List. Did you know you can create your own custom tokens? Go to Tools | Options |
Environment | Task List | Tokens to see the following window:

298 07 .06 Create Custom Tokens for the Task List

As shown in the preceding illustration, notice the following entries in this area: HACK, TODO,
UNDONE, and UnresolvedMergeConflict. By the way, UnresolvedMergeConflict is not an er-
ror; it is an actual token that you can use.

For now, let’s create a couple of our own. In the Name text box, type in the word low, set the
priority to Low, and then click Add. You should see the following:

Now do the same thing again, this time using the word high and setting the priority to High:

 Chapter 7 Debugging 299

You now have a couple of custom tokens. Add two comments to your existing code, and use
the new “low” and “high” tokens:

You now see the following in the Task List:

Sharing Tokens
You can create as many tokens as you want to suit your needs, so feel free to experiment with
these. Unfortunately, the tokens aren’t shared unless you export them and then someone
else imports them. Go to Tools | Import And Export Settings, and export the Task List Options
found under All Settings, Options, Environment:

300 07 .07 Create Code Shortcuts in the Task List

07.07 Create Code Shortcuts in the Task List

DEFAulT Ctrl+K, Ctrl+H

VISuAl BASIC 6 Ctrl+K, Ctrl+H

VISuAl C# 2005 Ctrl+K, Ctrl+H; Ctrl+E, Ctrl+T; Ctrl+E, T

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+K, Ctrl+H

VISuAl STuDIO 6 Ctrl+K, Ctrl+H

WInDOWS Alt,E, K, H

mEnu Edit | Bookmarks | Add Task List Shortcut

COmmAnD Command
Edit .ToggleTaskListShortcut

VERSIOnS 2005, 2008, 2010

CODE vstipTool0030

In vstipTool0029 (“TODO Comments in the Task List,” page 296), I showed you how to cre-
ate comments that show up in your Task List window. However, sometimes all you want is a
shortcut to a line of code that you visit often. You can create shortcuts to any line of code.
Just place the cursor on the line, and press Ctrl+K, Ctrl+H (toggles the shortcut on or off).
This creates the shortcut glyph in the margin:

To see all your shortcuts, go to the Task List dialog (Ctrl+\, T), and choose Shortcuts from the
drop-down list:

Now you should see all the shortcuts you created:

 Chapter 7 Debugging 301

You can treat them like any other task, and you can set priority levels as well as mark them
complete:

You can double-click any item to go to the line of code referenced in the shortcut, right-click,
and then choose Delete to remove it from the list.

Like all Task List items, these are Solution-wide in scope, so you will see all the shortcuts for
the entire solution in the Task List window.

07.08 Code Definition Window

DEFAulT Ctrl+\, Ctrl+D; Ctrl+\, D

VISuAl BASIC 6 Ctrl+\, Ctrl+D; Ctrl+\, D

VISuAl C# 2005 Ctrl+\, Ctrl+D; Ctrl+\, D; Ctrl+W, Ctrl+D; Ctrl+W, D

VISuAl C++ 2 Ctrl+\, Ctrl+D; Ctrl+\, D

VISuAl C++ 6 Ctrl+\, Ctrl+D; Ctrl+\, D; Ctrl+Shift+V

VISuAl STuDIO 6 Ctrl+\, Ctrl+D; Ctrl+\, D

WInDOWS Alt,V, D

mEnu View | Code Definition Window

COmmAnD View .CodeDefinitionWindow

VERSIOnS 2005, 2008, 2010

lAnGuAGES C++, C#

CODE vstipTool0012

Ever want to just click on a reference and see the definition as you go without having to use
Go To Definition (F12)? For quite some time, the Code Definition window has been available
to use just for this purpose. Go to View | Code Definition Window, and you see the following:

302 07 .09 Save Changes Before Building

Now click on any symbol you would like to get a definition for, and you should get some-
thing like this:

The Code Definition window provides you with an instant, read-only view of your definition
so that you don’t have to look for it when you are looking at a symbol.

07.09 Save Changes Before Building

WInDOWS Alt,T, O

mEnu Tools | Options | Projects and Solutions | Build and Run

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipProj0015

In Tools | Options | Projects and Solutions | Build And Run, notice the Before Building option:

The default setting is to save all changes to the solution file and to save all project files that
changed since the last build, but other options are also available:

Save Changes To Open Documents Only
This option does what it says and saves changes to all open documents without any prompt.

 Chapter 7 Debugging 303

Prompt To Save All Changes
This option prompts you with a choice about saving changes:

Don’t Save Any Changes
This runs the code but does not save any of the changes you have made. Usually this is not
a good idea, but it might be useful in some situations where you are testing many different
code scenarios quickly.

07.10 Navigate Errors in the Error List

DEFAulT F8 (next); Shift+F8 (previous)

VISuAl BASIC 6 [no shortcut]

VISuAl C# 2005 F8 (next); Shift+F8 (previous)

VISuAl C++ 2 F4 (next); Shift+F4 (previous)

VISuAl C++ 6 F8 (next); F4 (next)

VISuAl STuDIO 6 F8 (next); F12 (next); Shift+F8 (previous); Shift+F12 (previous)

WInDOWS [no shortcut]

COmmAnD Edit .GoToNextLocation; Edit .GoToPrevLocation

VERSIOnS 2005, 2008, 2010

CODE vstipTool0019

When checking out errors in the Errors window, you can easily navigate to the next error by
pressing F8 or to the previous error by pressing Shift+F8. These actions rotate through all the
errors in the direction of choice:

304 07 .11 Ordering and Multicolumn Sorting in Tool Windows

Additionally, as you cycle through, the location of each error in your code is selected:

07.11 Ordering and Multicolumn Sorting in Tool Windows
VERSIOnS 2005, 2008, 2010

CODE vstipTool0021

When working with the various tool windows, you often need the ability to rearrange the in-
formation in different ways. With column ordering and column sorting, you have this ability.

Column Ordering
This technique can be used in a variety of tool windows, most notably the Task List window.
Let’s begin with reordering the columns. In tool windows where this is supported, you can
drag the columns around to put them in the order you want:

Additionally, you can sort by clicking on a column to make it sort ascending or descending,
as shown in the following illustrations:

 Chapter 7 Debugging 305

Multicolumn Sorting
But the best part is that you can have multicolumn sorting. So you can sort first by one
column:

Then just press Shift, and click on the next column you would like to sort by:

If you want, you can continue to hold Shift and sort by more columns:

07.12 Pin a DataTip to Source Code

COmmAnD EditorContextMenus .CodeWindow .PinToSource

VERSIOnS 2010

CODE vstipDebug0005

In Visual Studio 2010, you can now pin DataTips to source code. The purpose of pinned
DataTips is to have the information stay with the line of code at all times, even after you
scroll away from that line. To create one, just put your mouse pointer over any variable while
debugging:

Notice the little pin at the end of the DataTip shown in the preceding illustration? If you click
the pin, you have a pinned DataTip. The most obvious indicator of this is the pushpin that
now shows up in the far left margin:

306 07 .13 Create a Floating DataTip

It is now, quite literally, pinned to a certain line of code. If you click the DataTip and drag it,
you can change the line that the DataTip is pinned to:

You can also drill down into objects and pin properties as well:

07.13 Create a Floating DataTip

VERSIOnS 2010

CODE vstipDebug0006

Floating DataTips are great for having information available where you want it. This tip shows
how you use them. First, enter Break Mode, and pause your mouse pointer over a variable in
the current scope; you should see something like the following:

Click the pin to create a pinned DataTip (see vstipDebug0005, “Pin a DataTip to Source
Code,” on page 305). Now, to make it a floating tip, put your mouse over the pinned tip until
you see the control panel shown in the following illustration.

Note The control panel might not come up exactly where the pinned tip is, so you might have
to look around a bit to find it.

For this tip, our focus is on the pin in the middle:

 Chapter 7 Debugging 307

Click it, and you should get a floating DataTip. (Notice the yellow color for floating DataTips.)

OK, so why should you care? Well, unlike pinned DataTips, floating DataTips don’t follow the
source code as you step through it. This is useful if you want to step through code and have
one or more pieces of information. The control panel might not come up exactly where the
pinned tip is, so you might have to look around a bit to find it.

07.14 Adding Comments to a DataTip

VERSIOnS 2010

CODE vstipDebug0007

You might want to make a comment to remind yourself about something in a DataTip
(pinned or floating), and now you can. First, enter Debug Mode, and then pause your mouse
over a pinned (see vstipDebug0005, “Pin a DataTip to Source Code,” on page 305) or floating
tip (see vstipDebug0006, “Create a Floating DataTip,” page 306) until you see the control
panel shown in the following illustration.

Note The control panel might not come up exactly where the pinned tip is, so you might have
to look around a bit to find it.

Click the chevron at the bottom:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

308 07 .15 Use a DataTip to Edit a Value

You should see something like the following illustration on your DataTip:

Now you can put in comments that travel with the DataTip at all times:

At the time of this writing, no upper limit is assigned to the amount of text you can put into
this area. I was able to successfully paste the entire text of “War and Peace” in here. While I
don’t suggest you do the same, the point is that you can be quite verbose with your com-
ments if you need to be.

07.15 Use a DataTip to Edit a Value

VERSIOnS 2008, 2010

CODE vstipDebug0026

You can change a variable value on the fly in a variety of ways. One of them is through the
DataTip. Just click the value for a simple variable to change it:

For more complex types, you might need to expand the variables and edit individual items:

 Chapter 7 Debugging 309

07.16 DataTip Value from the Last Debug Session

VERSIOnS 2010

CODE vstipDebug0012

Ever forget the values of variables you were just debugging? This is one of the coolest fea-
tures of the DataTips in Visual Studio 2010. Let’s assume that you have a pinned DataTip in
your code (see vstipDebug0005, “Pin a DataTip to Source Code,” on page 305):

Now you stop debugging. Even though you are not debugging, you can still view the value
from the last debug session by simply resting your mouse pointer over the pin in the margin:

07.17 Import and Export DataTips

WInDOWS Alt,D, X,X, Enter; Alt,D, P, P, Enter

mEnu Debug | Export DataTips; Debug | Import DataTips

COmmAnD Debug .ExportDataTips; Debug .ImportDataTips

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0013

Just as with breakpoints (see vstipDebug0003, “How to Import and Export Breakpoints,” on
page 329), you now have the ability to share your DataTips with team members by using the
Export / Import features. Just go to Debug | Import (or Export) DataTips:

When you export the DataTips, they are exported as XML. You can version these files along
with your source code so that other team members can have a copy of your DataTips.

310 07 .18 Using the Call Hierarchy

07.18 Using the Call Hierarchy

DEFAulT Ctrl+K, Ctrl+T; Ctrl+K, T

VISuAl C++ 2 [no shortcut]

mEnu [Context Menu] | View Call Hierarchy

COmmAnD EditorContextMenus .CodeWindow .ViewCallHierarchy

VERSIOnS 2010

lAnGuAGES C++, C#

CODE vstipTool0005

The Call Hierarchy window allows you to visualize calls to and from a selected method, prop-
erty, or constructor. To see how it works, just right-click any method, property, or constructor
in the editor and select View Call Hierarchy:

You should get a window similar to the following:

Notice the Calls To and Calls From areas related to your selection. You can expand them:

 Chapter 7 Debugging 311

When you click on a node in the tree, the Call Sites pane updates so that you can visit the call
if you want to:

Note You can double-click on the call site to have it automatically take you to the reference.

You can continue expanding the hierarchy to see further Calls To and Calls From information:

The best part is that you can right-click a symbol and get several options:

The following table describes some options you will come across as you use this feature:

312 07 .19 Searching Breakpoints

contex t menu item description

Add As New Root Adds the selected node to the tree view pane as a new root node .

Remove Root Removes the selected root node from the tree view pane . This option is available only
from a root node .
You can also use the Remove Root toolbar button to remove the selected root node .

Go To Definition Runs the Go To Definition command on the selected node . This navigates to the
original definition for a method call or variable definition .
You can also press F12 to run the Go To Definition command on the selected node .

Find All References Runs the Find All References command on the selected node . This finds all the lines
of code in your project that reference a class or member .
You can also use Shift+F12 to run the Find All References command on the selected
node .

Copy Copies the contents of the selected node (but not its subnodes) .

Refresh Collapses the selected node so that re-expanding it displays current information .

07.19 Searching Breakpoints

VERSIOnS 2010

CODE vstipDebug0002

When working with larger sets of breakpoints, it is useful to be able to search and filter based
on criteria you choose. In Visual Studio 2010, you finally have the ability to search break-
points the way you want. The ability to search your breakpoints is critical to being able to
take actions on groups of breakpoints because the Breakpoints window commands now act
on breakpoints that match the current search criteria. First, set some sample breakpoints in
your code, and then open the Breakpoints window (Ctrl+Alt+B):

For this example, set some labels for your breakpoints (see vstipDebug0001, “Adding Labels
to Breakpoints”, on page 293) that have values you would like to search on:

 Chapter 7 Debugging 313

Select the column you want to search on (in this example, the Labels column):

Type the string you are looking for in the search box inside the Breakpoints window, and
press Enter. In this example, I’ll search for any label with the letter b anywhere in it. This yields
the following result:

Now you can take actions on the breakpoints you can currently see. Most actions in the
Breakpoints window now act on the results of the current search criteria:

314 07 .20 Breakpoint Hit Count

To clear the search so that you can see all the breakpoints, just click the Reset All Search
Criteria So That All Breakpoints Are Shown button:

07.20 Breakpoint Hit Count

mEnu [Context Menu] | Hit Count

COmmAnD EditorContextMenus .CodeWindow .Breakpoint .BreakpointHitCount

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0019

Sometimes you might not want a breakpoint to stop the first time it is encountered. This is
particularly true when you are working with loops and want to stop after a number of itera-
tions. You can set a breakpoint so that it does not break every time but only when it is hit a
certain number of times. Just right-click any breakpoint, and click Hit Count:

The Breakpoint Hit Count dialog box appears:

The default is to “break always,” but you can change that to one of the following options:

 Chapter 7 Debugging 315

Break When The Hit Count Is Equal To
Choose this option if you want to break when the hit count reaches an exact value. So, in this
example, if you put in a 5, the break does not occur until the breakpoint has been hit 5 times.
This is useful when you know the number of hits you want before stopping.

Break When The Hit Count Is A Multiple Of
This breaks every x number of times it is hit. So if you put in a 5, it breaks every 5th time (5,
10, 15, and so on). This helps when you aren’t sure exactly where the problem is, so you want
to skip in predefined increments as you look:

At any time, you can use the Breakpoints window to tell you the current hit count while you
are debugging. In this example, the hit count is currently 15:

316 07 .21 Set a Breakpoint on a Function

Break When The Hit Count Is Greater Than Or Equal To
This option takes any number and stops when the hit count has reached that number or
higher. Use this option when you aren’t exactly sure what the value should be but want to
stop when it reaches an upper bound:

07.21 Set a Breakpoint on a Function

DEFAulT Ctrl+B

VISuAl BASIC 6 Ctrl+B

VISuAl C# 2005 Ctrl+B; Ctrl+D, Ctrl+N; Ctrl+D, N

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+B

VISuAl STuDIO 6 [no shortcut]

WInDOWS Alt,D, B, F

mEnu Debug | New Breakpoint | Break at Function

COmmAnD Debug .BreakatFunction

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0020

By default, breakpoints are based on line and character position:

 Chapter 7 Debugging 317

But what if you don’t want to break on a specific line but instead want to break when you hit
a particular function? There are two ways to do this.

Breakpoints Window
In the Breakpoints window, click New and choose Break At Function (or press Ctrl+B) to bring
up the New Breakpoint dialog box.

In the New Breakpoint dialog box, type in the name of the function you want to break at,
and then click OK.

Warning To ensure that the correct function name is being used, always select Use IntelliSense
To Verify The Function Name when you perform this action. Otherwise, the breakpoint might not
work.

318 07 .22 Set a Simple Breakpoint Condition

After you click OK in the New Breakpoint dialog box, you should see something similar to the
following:

The next illustration shows what a function breakpoint looks like in the Breakpoints window:

07.22 Set a Simple Breakpoint Condition

mEnu [Context Menu] | Condition

COmmAnD EditorContextMenus .CodeWindow .Breakpoint .BreakpointCondition

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0021

Conditional breakpoints are arguably the most powerful types of breakpoints you can set.
Many steps are involved in using them correctly, and knowing what steps you need to take is
half the battle. Start by right-clicking on any breakpoint and choosing Condition.

This gives us the Breakpoint Condition dialog box. Notice that the condition can be turned
off by clearing the Condition check box. Additionally, two options are available for the condi-
tion that you set:

 Chapter 7 Debugging 319

●● Is true

Used for Boolean expressions that evaluate to true or false.

●● Has changed

Used for detecting whether the value of an expression has changed at the breakpoint
location.

Let’s take a look at a couple of examples. Suppose we have the following For loop:

Is True
We can set a simple “Is true” condition that says when the variable “i” is greater than 5, the
code should stop:

320 07 .22 Set a Simple Breakpoint Condition

When we run the code and the breakpoint is hit, sure enough, it stops when the value of “i” is
greater than 5:

Has Changed
This one is more interesting. Basically we set up something to watch. In this case, let’s just
have it watch the “i” variable:

When the breakpoint is hit and the value of “i” has changed in any way, the code stops:

Special Notes
Anytime you set an advanced breakpoint, you get a new glyph (red sphere with a plus sign
in it):

You can always tell what kind of breakpoint you have by pausing your mouse over the glyph
and looking at the tooltip or by looking in the Breakpoints window:

 Chapter 7 Debugging 321

07.23 Set a Complex Breakpoint Condition

mEnu [Context Menu] | Condition

COmmAnD EditorContextMenus .CodeWindow .Breakpoint .BreakpointCondition

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0022

We previously discussed how to set simple conditions. (See vstipDebug0021, “Set a Simple
Breakpoint Condition,” on page 318.) The real power of the Breakpoint Condition dialog box
is the ability to execute any line of code from it:

For example, you can use it to call external methods. The following example illustrates this,
but bear in mind that it’s a contrived example, designed to show how this works. The follow-
ing illustration shows the code we want to execute:

Notice that a variable, x, is given a value. In this case, I hard-coded a value, but the value
would presumably come as the result of some method execution. I want the breakpoint to
stop only if the value of x is 20. I have a method that returns a Boolean value to test for the
condition I want:

322 07 .23 Set a Complex Breakpoint Condition

I won’t get into the obvious debate about whether this is a good idea or not, how the meth-
od should be constructed, or if the average rainfall in the Amazon Basin is a factor here. I’ll
just call the method from the Breakpoint Condition dialog box.

Notice that after typing a few characters, I use Ctrl+Space to get IntelliSense here if needed
(see vstipEdit0017, “Using the New IntelliSense,” on page 216):

Make sure the Is True option is selected:

 Chapter 7 Debugging 323

Now I have a conditional breakpoint that uses an external method to determine whether or
not the code should stop. Naturally, you can add more Boolean logic here as well and include
And / Or / Not / Xor:

Now the really interesting part is that you can have your checking code be available only for
Debug builds:

By surrounding your code with conditional compilation directives, you can easily have check-
ing code that is around only while debugging. Following is what the checking method would
look like in C#:

Play with this feature some, and you can see why most people (including me) think that this
is one of the most powerful breakpoint features around.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

324 07 .24 Setting a Breakpoint Filter

07.24 Setting a Breakpoint Filter

WInDOWS Alt,T, O (options)

mEnu Tools | Options; [Context Menu] | Filter

COmmAnD Tools .Options; EditorContextMenus .CodeWindow .Breakpoint .BreakpointFilter

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0024

Breakpoint filters are used when you want to break based on thread, process, or machine in-
formation. This is particularly useful for debugging multithreaded applications. To make sure
you can set them, go to Tools | Options | Debugging | General and select Enable Breakpoint
Filters:

To make a breakpoint filter, just right-click any regular breakpoint and choose Filter:

 Chapter 7 Debugging 325

You get the Breakpoint Filter dialog box:

As shown in the preceding graphic, I’ve decided to break whenever the breakpoint is hit and
the thread name is “bubba.” The following illustration shows what it looks like in the Threads
window when I actually run my code and the breakpoint is hit:

07.25 Setting a Tracepoint in Source Code

mEnu [Context Menu] | When Hit

COmmAnD EditorContextMenus .CodeWindow .Breakpoint .BreakpointWhenHit

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0010

Tracepoints give you the opportunity to unobtrusively print out information during applica-
tion execution. This tip shows you how to use the IDE to create tracepoints, but for detailed
information about how to do this in code, see “Tracing and Instrumenting Applications” at
http://msdn.microsoft.com/en-us/library/zs6s4h68(VS.100).aspx.

326 07 .25 Setting a Tracepoint in Source Code

The best way to illustrate simple tracepoints is with a basic loop. I would suggest creating a
new project and making a simple for loop to play with. Here is my sample code:

Setting Tracepoints
You have a couple of ways to set a tracepoint on a line of code.

One way is to right-click on the line and choose Breakpoint | Insert Tracepoint.

Alternatively, you can set a breakpoint (F9) and then right-click on the breakpoint in the indi-
cator margin and choose When Hit:

 Chapter 7 Debugging 327

Whichever technique you use, the When Breakpoint Is Hit dialog box appears:

The When Breakpoint Is Hit dialog box provides three options.

Print a message
Used to print out any special variables (that begin with a $), evaluated expressions (inside
curly braces), or literal text.

Run a macro
Used to actually run a macro when this tracepoint is hit and can do extended processing or
kick off some other task.

Continue execution
Makes the tracepoint unobtrusive and lets the application run. If you clear the Continue
Execution check box, the tracepoint becomes a breakpoint.

Click OK and notice something interesting. The normal round breakpoint indicator is now a
diamond:

328 07 .25 Setting a Tracepoint in Source Code

This is how we distinguish breakpoints (stop execution) from tracepoints (don’t stop ex-
ecution). For example, if I were to clear the Continue Execution check box in the When
Breakpoint Is Hit dialog box, the breakpoint symbol would become round again:

Tracepoints show up along with breakpoints in the Breakpoints window:

At this point, you have done enough to see tracepoints in action, so run your application. It
should execute and then end. Open the Output window (Debug | Windows | Output), and
notice the entries from our tracepoint:

The default message isn’t very helpful in this case, so let’s change it to something else. In this
example, let’s put The value of i is {i}. Notice that I put the expression to be evaluated (the
variable i in this case) inside curly braces:

Now you should see the following in the Output window:

 Chapter 7 Debugging 329

Change Default Message
There is a lot more to learn here, but you have a good start. One thing you might want to do
is permanently change the default output message (currently “Function: $FUNCTION, Thread:
$TID $TNAME”) that you get when you set a new tracepoint. This is useful if you find that you
use a certain message often across projects. You can do this by going into the registry:

HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\<version>\Debugger

Warning Editing the registry can cause issues with Visual Studio, so perform these steps at your
own risk.

Then modify the string value called DefaultTracepointMessage to the new default you would
like to have.

07.26 Import and Export Breakpoints

COmmAnD EditorContextMenus .CodeWindow .Breakpoint .BreakpointExport; DebuggerContextMenus .
BreakpointsWindow .Exportselected

VERSIOnS 2010

CODE vstipDebug0003

These next features are specifically designed so that you can share breakpoints with other
team members. When you do this, make sure to version your exported breakpoints with your
source code for sharing.

Set one or more breakpoints in your code, and open the Breakpoints window (Ctrl+Alt+B).
Notice the new Export button. It’s important to understand that it exports breakpoints
matching the current search criteria. In other words, if you don’t see the breakpoint in the
Breakpoints window, it will not be exported:

330 07 .27 Run to Cursor

When you click the Export button, you get the classic Save As dialog box; notice that your
breakpoints are saved as an XML file:

Put in some name for the file, and click Save. Give the file you created to your teammate or, if
you are just practicing, you can delete your breakpoints.

Click on the new Import button:

Choose the XML file that was exported, and click Open to import your breakpoints.

07.27 Run to Cursor

DEFAulT Ctrl+F10

VISuAl BASIC 6 Ctrl+F10; Ctrl+F8

VISuAl C# 2005 Ctrl+F10

VISuAl C++ 2 Ctrl+F10; F7

VISuAl C++ 6 Ctrl+F10

VISuAl STuDIO 6 Ctrl+F10

WInDOWS [no shortcut]

mEnu [Context Menu] | Run To Cursor

COmmAnD Debug .RunToCursor

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0023

This is one that has been around a while but seems to get lost among all the other features
that are out there. Basically, if you have some code and want to quickly run it and set a tem-
porary breakpoint at the same time, this tip is for you.

Just put the cursor on the line you want to break on:

 Chapter 7 Debugging 331

Press Ctrl+F10, or right-click and choose Run To Cursor:

The application starts and a temporary Breakpoint is set on the line where you were, but
you do not see any breakpoint indicator. The next time the code hits that line, it enters break
mode:

Keep in mind that the application does not break until the line the temporary breakpoint is
on is hit. If the line is never executed, the application will not break for debugging.

07.28 Using the Exception Assistant

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0030

The Exception Assistant appears whenever a runtime exception occurs. It shows the type of
exception, troubleshooting tips, and corrective actions as applicable:

Exception Object and Description
The layout is pretty straightforward. First you have the exception object type and description:

332 07 .28 Using the Exception Assistant

Troubleshooting Tips
Then you have the Troubleshooting Tips area that provides advice about how to resolve the
problem in a user-friendly format. The items are typically links to more information that can
be found in the online or offline Help:

Help Online
Search For More Help Online is pretty interesting when you click the link:

You get a dialog box asking permission to send information online:

Clicking OK results in sending the information to MSDN online and performing a search:

 Chapter 7 Debugging 333

Actions
The Actions area lets you get information about the Exception Object:

The View Detail link opens a dialog box that exposes the details of the object for you to
review:

The Copy Exception Detail To The Clipboard link captures textual information you can put
into any editor for analysis. It’s not overly detailed but does provide a starting point for re-
solving the issue:

334 07 .28 Using the Exception Assistant

Turning Off the Exception Assistant
Although not suggested, you can actually turn this feature off. Just go to Tools | Options |
Debugging | General, and clear the Enable The Exception Assistant check box:

The following illustration shows what the same error looks like with the Exception Assistant
off:

Unwind The Call Stack On Unhandled Exceptions
If you want more information about the details of this option, check out the great article by
Bill Horst, at http://blogs.msdn.com/b/vbteam/archive/2008/12/08/did-you-know-you-can-
unwind-the-call-stack-from-exceptions-bill-horst.aspx.

 Chapter 7 Debugging 335

07.29 Use a Specific Port for the Development Server (Web Applications)

VERSIOnS 2005, 2008, 2010

CODE vstipProj0029

If you are using a firewall and want to use the same port while you do web development to
accommodate a firewall rule, you can configure Visual Studio to use a fixed port. To do this,
go to the project properties for any web application and click Web:

On the Web tab, go to the Servers area:

In the Servers area, choose Specific Port, and then assign a port number to use:

The project now continues to use the port number assigned instead of automatically assign-
ing one.

336 07 .30 Application and Page Level Tracing

07.30 Application and Page Level Tracing

VERSIOnS 2005, 2008, 2010

CODE vstipProj0030

When debugging any project, it’s good to have as much information as possible to help deal
with any issues. Working with web projects is always a challenge no matter what IDE you use.
Fortunately, the folks on the web team have provided a useful tool just for web developers:
tracing. Tracing can be enabled at two levels: application and page.

Warning Generally, you should not enable tracing in an production website, because this can
display sensitive configuration information to anyone who views pages in the website. Tracing
is intended for debugging purposes only. If the localOnly attribute is true, trace information is
displayed only for localhost requests. Additionally, if <deployment retail=true> is set in the Web.
config file, tracing is disabled.

Application Level Tracing
You can enable application tracing by going to Web.config and adding the <trace> element
inside <system.web>:

<configuration>
 <system.web>

 <trace enabled=”true” requestLimit=”50” localOnly=”true” />

 <system.web>

<configuration>

To access the application trace information, simply append “trace.axd” to the root of your
website:

The following is a part of what you should see:

 Chapter 7 Debugging 337

Attributes
Several attributes can be applied when using trace, all of which are optional:

●● enabled (Boolean) Specifies whether tracing is enabled for an application. The default
is false.

●● localOnly (Boolean) Indicates whether the trace information is available only on the
host web server. If false, the trace is visible from any computer, which can be a security
issue. The default is true.

●● mostRecent (Boolean) Shows whether the most recent application-level tracing out-
put is displayed. If beyond the limits that are indicated by the requestLimit attribute,
older trace data is discarded. If false, trace data is displayed for requests until the request-
Limit attribute is reached. The default is false.

●● pageOutput (Boolean) Specifies whether trace output is rendered at the end of each
page. If false, trace output is accessible through the trace utility only. The default is
false.

●● requestlimit (Int32) Indicates the number of trace requests to store on the server.
If the limit is reached and the mostRecent attribute is false, trace is automatically dis-
abled. The maximum request limit is 10,000. If a value that is greater than 10,000 is
specified, it is silently rounded down to 10,000 by ASP.NET. The default is 10.

●● tracemode The order in which to display trace information. The traceMode attribute
can be one of two possible values:

●● SortByCategory Trace information is displayed alphabetically by user-defined
category.

●● SortByTime Trace information is displayed in the order that the trace informa-
tion is processed. The default is SortByTime.

338 07 .30 Application and Page Level Tracing

●● writeToDiagnosticsTrace (Boolean) Indicates whether ASP.NET trace messages are
forwarded to the System.Diagnostics tracing infrastructure, for any listeners that are
registered to display trace messages. The default is false.

You can find more information about trace element settings at http://msdn.microsoft.com/en-
us/library/6915t83k.aspx.

Trace Details
Additionally, you can click on the View Details link of each item and see a great deal of
information:

Page Level Tracing
You might not want to have tracing enabled for the entire application for a variety of rea-
sons, such as performance, wanting to focus in on just one page, and so on. Turning on trac-
ing for a page is very simple. Just turn on tracing in your @Page directive, as in the following
example:

<%@ Page Title=”Home Page” Language=”C#” MasterPageFile=”~/Site.master”
AutoEventWireup=”true”
 CodeBehind=”Default.aspx.cs” Inherits=”WebApplication61._Default” Trace=”true” %>

Now when you view that page, it shows the trace information on the page:

 Chapter 7 Debugging 339

This is equivalent to setting pageOutput to true at the application level, but it affects only
those pages where you have turned tracing on.

Combined Tracing
Tracing can get confusing, but the one thing to remember is that the page always wins when
tracing is explicitly set. You can use the following table to help keep the tracing results in
mind if you set both application and page level tracing.

application page result for a page

true false false

false true true

Finally
To say there is a lot going on here would be an understatement. I leave it to you to ex-
plore more of the details, which can be found at http://msdn.microsoft.com/en-us/library/
bb386420.aspx.

340 07 .31 The Watch Window: Watching and Changing Values

07.31 The Watch Window: Watching and Changing Values

DEFAulT Shift+F9 (QuickWatch); Ctrl+Alt+Q (QuickWatch)

VISuAl BASIC 6 Shift+F9 (QuickWatch); Ctrl+Alt+Q (QuickWatch)

VISuAl C# 2005 Shift+F9 (QuickWatch); Ctrl+Alt+Q (QuickWatch); Ctrl+D, Ctrl+Q (QuickWatch); Ctrl+D, Q
(QuickWatch)

VISuAl C++ 2 Shift+F9 (QuickWatch); Ctrl+Alt+Q (QuickWatch)

VISuAl C++ 6 Shift+F9 (QuickWatch); Ctrl+Alt+Q (QuickWatch)

VISuAl STuDIO 6 Shift+F9 (QuickWatch); Ctrl+Alt+Q (QuickWatch)

WInDOWS Alt,D, Q (QuickWatch)

mEnu Debug | QuickWatch; [Context Menu] | Add Watch

COmmAnD Debug .QuickWatch; Debug .AddWatch

VERSIOnS 2005, 2008, 2010

CODE vstipTool0104

By definition, a watch expression does exactly what it sounds like it should do: It watches
something and shows you the result so that you can monitor data as you are debugging. You
can use any of the following techniques to create a watch expression:

●● Type it in

●● QuickWatch

●● Add Watch

Let’s take a closer look.

Watch Expressions
First we need to define what you can watch. Essentially, you can watch any valid expression.
Some examples of valid watch expressions are shown in the following illustration:

Watch Window
The easiest way to open the main Watch window is to press Ctrl+Alt+W,1 or go to Debug |
Windows | Watch | Watch 1. You can have up to four Watch windows, so you can organize
your watch expressions into groups if you want:

 Chapter 7 Debugging 341

Creating a Watch Expression

Type it in
One of the quickest ways to put in most watch expressions is just to type in the variable or
expression you want to watch in the Watch window:

QuickWatch (Shift+F9)
Despite the name, this is actually the longest way to set a watch expression. When you press
Shift+F9 or go to Debug | QuickWatch, you get the following dialog box:

Type any expression in the Expression area, and then click Reevaluate to see the value appear
in the Value area. If you are happy with what you see and want to add a watch expression to
the QuickWatch window, just click Add Watch.

342 07 .31 The Watch Window: Watching and Changing Values

Add Watch
This is another pretty quick watch expression to set. Just right-click a variable or selected ex-
pression and instantly have it added to Watch 1:

Changing Values
With any watch expression, you can change the value to suit your needs by just selecting the
value you want to change:

Then type in a new value, and press Enter:

The value turns red to indicate it has changed. This makes it easy to track your changes.

 Chapter 7 Debugging 343

07.32 Understanding QuickWatch

DEFAulT Shift+F9; Ctrl+Alt+Q

VISuAl BASIC 6 Shift+F9; Ctrl+Alt+Q

VISuAl C# 2005 Shift+F9; Ctrl+Alt+Q; Ctrl+D, Ctrl+Q; Ctrl+D, Q

VISuAl C++ 2 Shift+F9; Ctrl+Alt+Q

VISuAl C++ 6 Shift+F9; Ctrl+Alt+Q

VISuAl STuDIO 6 Shift+F9; Ctrl+Alt+Q

WInDOWS Alt, D, Q

mEnu Debug | QuickWatch

COmmAnD Debug .QuickWatch

VERSIOnS 2005, 2008, 2010

CODE vstipTool0108

In vstipTool0104 (“The Watch Window: Watching and Changing Values,” page 340), I showed
you how to use QuickWatch to get data into a Watch window. From that perspective, using
QuickWatch is rather slow and cumbersome. However, QuickWatch doesn’t exist for only that
reason, so it is worth another look.

So, why does QuickWatch exist? It was actually created to be a dialog box that is a one-stop
shop for quickly working with expressions. Think of it as a dialog box dedicated to a single
watch expression. It’s a modal dialog box, so you need to close it before moving on with any
other debugging. Bring it up by pressing Shift+F9 or going to Debug | QuickWatch on the
Menu Bar.

What Does It Do?
Like a normal watch expression, you can edit the value in it:

Also, you can change the expression and click Reevaluate to see a new value:

344 07 .32 Understanding QuickWatch

One big advantage to the QuickWatch window is the fact that it can be resized. It can be very
useful when digging deep:

Other Options
While it is useful for specific scenarios, with the advent of DataTips (see vstipDebug0005, “Pin
a DataTip to Source Code,” on page 305), the usefulness of the QuickWatch dialog box has
diminished somewhat, so you might choose to use DataTips instead. It all comes down to
personal preference.

 Chapter 7 Debugging 345

07.33 The Watch Window: Visualizers

DEFAulT Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

VISuAl BASIC 6 Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

VISuAl C# 2005 Ctrl+Alt+W,1; Ctrl+D, Ctrl+W; Ctrl+D, W; Ctrl+Alt+W,[2-4]

VISuAl C++ 2 [no shortcut]

VISuAl C++ 6 Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

VISuAl STuDIO 6 Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

WInDOWS Alt+D, W, W, [1-4]

mEnu Debug | Windows | Watch | Watch [1,2,3,4]

COmmAnD Debug .Watch[1,2,3,4]

VERSIOnS 2005, 2008, 2010

CODE vstipTool0106

When using the Watch windows, you might come across visualizers. A visualizer is a debug-
ger component that enables the debugger to display (visualize) the contents of a data object
in a meaningful, understandable form. Visualizers are pretty easy to spot because they have
a magnifying glass icon:

Notice that when you click on the magnifying glass, it gives you options (based on the data
you are looking at) for a visualizer. If you select Text Visualizer, you get the following dialog
box:

You might find it useful to leverage the power of visualizers when looking at different types
of data. If this output were HTML, you would use the HTML Visualizer:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

346 07 .34 The Watch Window: Refreshing Data

And you would see the following dialog box:

07.34 The Watch Window: Refreshing Data

WInDOWS Alt,T, O

mEnu Tools | Options | Debugging | General

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipTool0107

When you evaluate an expression in one of the Watch windows, one of two refresh icons
might appear in the Value column. One refresh icon is a circle that contains two wavy lines
that resemble threads. The other icon is two circling arrows, as shown in the following
example:

 Chapter 7 Debugging 347

Refresh Icons
Following is what the documentation (http://msdn.microsoft.com/en-us/library/z4ecfxd9.aspx)
has to say about these icons.

Circling arrows
If the circling arrows appear, the expression was not evaluated for one of the following
reasons:

●● An error occurred as the expression was being evaluated. For example, a time-out
might have occurred, or a variable might have been out of scope.

●● Evaluating the expression would have required evaluating a property or making an
implicit function code. Evaluation of properties and implicit function calls can have side
effects that affect the state of your program. Because these effects can make debug-
ging more difficult, automatic evaluation of properties and implicit function calls by the
debugger is often turned off. Occasionally, a programmer might unintentionally turn
off automatic evaluation.

If you want to learn more about side effects, see the topic “Side Effects and Expressions” at
http://msdn.microsoft.com/en-us/library/a7a250bs.aspx.

Two threads
If the two threads appear, the expression was not evaluated because of a potential cross-
thread dependency. A cross-thread dependency means that evaluating the code requires
other threads in your application to run temporarily. When you are in break mode, all threads
in your application are typically stopped. Allowing other threads to run temporarily can have
unexpected effects on the state of your program and causes the debugger to ignore events
such as breakpoints.

Refreshing the data

To refresh the data, just click the icon or press the Spacebar:

348 07 .35 The Watch Window: Adding Watches from Variable Windows

Turning It Off
Although not suggested, you can turn this feature off by going to Tools | Options |
Debugging | General and clearing the Enable Property Evaluation And Other Implicit
Function Calls check box:

07.35 The Watch Window: Adding Watches from Variable Windows

mEnu [Context Menu] | Add Watch

COmmAnD Debug .AddWatch

VERSIOnS 2005, 2008, 2010

CODE vstipTool0109

The Locals, Autos, Watch, and QuckWatch windows are all known, collectively, as the Variable
windows. Did you know that every Variable window supports the Debug.AddWatch com-
mand? This tip provides some examples.

Locals Window

Autos Window

 Chapter 7 Debugging 349

QuickWatch

Watch [1, 2, 3, 4] Window
This is one you might not expect. The Watch windows actually have the ability to add
watch expressions. Very useful if you have a complex expression and want to copy it to do a
modification:

Keyboard Mapping
If you find yourself adding watch expressions frequently in break mode, you should consider
mapping a keyboard shortcut. Go to Tools | Options | Environment | Keyboard, and assign a
shortcut to the Debug.AddWatch command:

350 07 .36 Create Folders in Class View

07.36 Create Folders in Class View

mEnu [Context Menu] | New Folder

COmmAnD View .ClassViewNewFolder

VERSIOnS 2005, 2008, 2010

CODE vstipTool0072

Did you know that you can create folders to easily organize items in Class View? It’s pretty
easy to do. Just open the Class View dialog box (Ctrl+Shift+C):

 Chapter 7 Debugging 351

Create a New Folder
Click the Class View New Folder button:

Give your new folder some logical name:

Note These folders are not created on the file system but are stored in your .suo file.

352 07 .36 Create Folders in Class View

Putting Items into Your Folder
You can simply click and drag items into your new folder to organize them:

You can also copy and paste items into the folders as well. These operations are strictly orga-
nizational and don’t actually make an extra copy of the item in your code.

Removing Items from Folders
You can remove items from your folder at any time by deleting them (right-click or press the
Delete key).

Note This deletes only the item from the Class View and doesn’t actually delete your code.

Creating Subfolders
You can even nest the folder structure by creating a new folder inside an existing one:

Deleting Folders
Naturally you can delete any folder by right-clicking it and choosing Delete.

 Chapter 7 Debugging 353

07.37 Search in Class View

DEFAulT Ctrl+K, Ctrl+V

VISuAl C++ 2 [no shortcut]

COmmAnD View .ClassViewGoToSearchCombo; View .ClassViewSearch

VERSIOnS 2005, 2008, 2010

CODE vstipTool0073

The Class View window has a search capability that finds items quickly. Just go to the Class
View Search Combo box (Ctrl+K, Ctrl+V):

Warning I’ve actually had the search combo box disappear on me before. Restarting Visual
Studio should bring it back if this happens to you, too.

Type in the keyword to search for, and press Enter:

It searches for the keyword in items and shows the results while highlighting the last in-
stance where the keyword was found in an item. The search is a contains operation, so it
looks for anything that has the keyword anywhere in the result.

354 07 .37 Search in Class View

View .ClassViewSearch Command
If you want a quick way to do this by running a command, you can use View.ClassViewSearch
with any keyword(s). First, go someplace you can run a command. I prefer to use the Find
Combo box with the command character (Ctrl+/) to run my commands (see vstipTool0070,
“Understanding Commands: Running Commands,” on page 121, for more options):

Type in View.ClassViewSearch [keyword(s)]. In this case, let’s look for the word “task”:

Just press Enter, and we get our results in the Class View:

Use a Previous Search
You can repeat any previous search in Class View by using the drop-down list from the
Search Combo box:

 Chapter 7 Debugging 355

Clear Your Search
Whichever method you use, you can always clear your search by clicking the Clear Search
button:

07.38 Synchronize Your Class View

COmmAnD View .SynchronizeClassView

VERSIOnS 2005, 2008, 2010

CODE vstipTool0074

When you are in your code, sometimes you would like to have Class View synchronize with
your code. By default, it doesn’t do this.

You can run the View.SynchronizeClassView command from the Find combo (Ctrl+/) to see
how this works:

Note This command works only if the editor has the focus, so you need to run it from the Find
drop-down box as shown in this example or assign a shortcut key to it. It does not work if you try
to run it from the Command window.

356 07 .39 The Misnamed and Misunderstood Object Browser

It finds your current location in Class View:

07.39 The Misnamed and Misunderstood Object Browser

DEFAulT Ctrl+Alt+J

VISuAl BASIC 6 Ctrl+Alt+J; F2

VISuAl C# 2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

VISuAl C++ 2 Ctrl+Alt+J; Shift+Alt+F1

VISuAl C++ 6 Ctrl+Alt+J

VISuAl STuDIO 6 Ctrl+Alt+B; F2

WInDOWS Alt,V, J

mEnu View | Object Browser

COmmAnD View .ObjectBrowser

VERSIOnS 2005, 2008, 2010

CODE vstipTool0077

Many people often ask why they should use the Object Browser. First and foremost, it is a
way to browse to find the correct class, object, property, method, interface, and so on that
is useful for your needs as you code. But the Object Browser does much, much more than its
name implies.

 Chapter 7 Debugging 357

As you can see from the high-level view shown in the preceding illustration, the Object
Browser is composed of several parts:

●● Toolbar (very top) Contains various controls for manipulating the various functions
available.

●● Objects pane (left, top and bottom) Displays an expandable list of symbols whose
top-level nodes represent components or namespaces available in the current brows-
ing scope.

●● members pane (right, top) Displays the available members, if available, of any sym-
bol selected in the Objects pane.

●● Description pane (right, bottom) Displays detailed information about the currently
selected object or member.

First, the name would have you think that it shows only objects. This is simply untrue. In fact,
it shows many different types of symbols, which is better than just showing objects:

358 07 .40 The Object Browser: Setting the Browsing Scope

In this example, as shown in the preceding illustration, we see a couple of projects with sever-
al namespaces in them, in addition to some interfaces and classes. The classes with envelopes
represent internal classes. The icons are explained in vstipTool0076, “Class View and Object
Browser Icons,” in Appendix B (http://go.microsoft.com/FWLink/?Linkid=223758).

Second, you might think that all you can do is browse items. Again, not true. For example,
you can add references to your project from the Object Browser when you find something
that you want to include:

The next series of tips explore, in detail, the use of the Object Browser in your work.

07.40 The Object Browser: Setting the Browsing Scope

DEFAulT Ctrl+Alt+J

VISuAl BASIC 6 Ctrl+Alt+J; F2

VISuAl C# 2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

VISuAl C++ 2 Ctrl+Alt+J; Shift+Alt+F1

VISuAl C++ 6 Ctrl+Alt+J

VISuAl STuDIO 6 Ctrl+Alt+B; F2

WInDOWS Alt, V, J

mEnu View | Object Browser

COmmAnD View .ObjectBrowser

VERSIOnS 2005, 2008, 2010

CODE vstipTool0078

 Chapter 7 Debugging 359

When you use the Object Browser, it’s a good idea to know what components you are brows-
ing. So let’s start our examination at the top, with the Browse area:

Browse
The Browse drop-down box lets you specify the browsing scope (the list of items you see in
the Objects pane):

All Components
The All Components drop-down quite literally lets you browse all components, including all
of the .NET Framework, the current solution and its referenced components, and any other
components that you have added by selecting Edit Custom Component Set. It’s a massive
dose of information overload, so be prepared.

.NET Framework X / Silverlight X
Sets the browsing scope to a specific version of the Framework.

My Solution
Shows items in the current solution and referenced components.

360 07 .40 The Object Browser: Setting the Browsing Scope

Custom Component Set
Sets browsing scope to the list of components identified by editing the Custom Component
Set. For example, if I choose NET Framework 4, I see the following:

Edit Custom Component Set
You can edit the Custom Component Set to identify the components that create the brows-
ing scope in two ways:

●● Choose Edit Custom Component Set in the browse drop-down box.

●● Click the “Edit Custom Component Set” button on the toolbar:

Regardless of the method used, you get the Edit Custom Component Set dialog box:

 Chapter 7 Debugging 361

In the Edit Custom Component Set dialog box, you can add or remove components from a
variety of sources. The browsing scope of the Custom Component Set is determined by the
items listed in the Selected Projects And Components section of this dialog box. As you can
see, information about the type, version, and source (location) is available here.

If you pick something that can’t be browsed, you get the following message:

362 07 .41 The Object Browser: Navigation and References

After you have successfully edited the Custom Component Set, it is automatically selected in
the Browse drop-down box and becomes the current browsing scope:

07.41 The Object Browser: Navigation and References

DEFAulT Ctrl+Alt+J (view object browser); Alt+Right Arrow (forward); Alt+Left Arrow (back)

VISuAl BASIC 6 Ctrl+Alt+J (view object browser); F2 (view object browser); Alt+Right Arrow (forward); Alt+Left
Arrow (back)

VISuAl C# 2005 Ctrl+Alt+J (view object browser); Ctrl+W, Ctrl+J (view object browser); Ctrl+W, J (view object
browser); Alt+Right Arrow (forward); Alt+Left Arrow (back)

VISuAl C++ 2 Ctrl+Alt+J (view object browser); Shift+Alt+F1 (view object browser); Alt+Right Arrow (forward);
Alt+Left Arrow (back)

VISuAl C++ 6 Ctrl+Alt+J (view object browser); Alt+Right Arrow (forward); Alt+Left Arrow (back)

VISuAl STuDIO 6 Ctrl+Alt+B (view object browser); F2 (view object browser); Alt+Right Arrow (forward); Alt+Left
Arrow (back)

WInDOWS Alt,V, J (view object browser)

mEnu View | Object Browser

COmmAnD View .ObjectBrowser; View .Forward; View .Backward; View .ObjectBrowserAddReference

VERSIOnS 2005, 2008, 2010

CODE vstipTool0079

Continuing our look at the Object Browser, we now turn our attention to the toolbar buttons
to the right of the Browse area:

 Chapter 7 Debugging 363

Navigation
The Forward (Alt+Right Arrow) and Back (Alt+Left Arrow) buttons can be used to easily navi-
gate among items in the Objects pane as you browse:

I haven’t discovered any obvious upper limit to how many times you can go back. I have per-
sonally tested it to go back over 75 items, with no end in sight. The places are remembered
(and more added) as long as Visual Studio remains open, regardless of which project or solu-
tion you are using.

References
You can add a reference to the currently selected item in the Objects pane to your project:

364 07 .41 The Object Browser: Navigation and References

Read the tooltip carefully. Notice that it says Add To References In Selected Project In Solution
Explorer. This might confuse you when you try to use it for the first time because you can
select a reference that you want to add and then find the button disabled (top right in the
following illustration):

This is because you most likely don’t have a project selected in Solution Explorer, as we do in
the following example:

Simply click on (or in) any project, and the button becomes enabled so that you can add the
reference to your project.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Chapter 7 Debugging 365

07.42 The Exceptions Dialog Box

DEFAulT Ctrl+Alt+E

VISuAl BASIC 6 Ctrl+Alt+E

VISuAl C# 2005 Ctrl+Alt+E; Ctrl+D, Ctrl+E; Ctrl+D, E

VISuAl C++ 2 Ctrl+Alt+E

VISuAl C++ 6 Ctrl+Alt+E

VISuAl STuDIO 6 Ctrl+Alt+E

WInDOWS Alt,D, X

mEnu Debug | Exceptions

COmmAnD Debug .Exceptions

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0039

By default, Visual Studio breaks only when an exception is not handled by user code. This
can sometimes be problematic because the exception can bubble up through several calls
far away from where the actual exception originally occurred, making it harder to find the
problem.

You can use the Exceptions dialog box (Ctrl+Alt+E) to configure exceptions to break when
they happen rather than checking to see whether they are unhandled:

The exceptions are divided up into five broad categories. Also, as shown in the preceding il-
lustration, two options are provided: Thrown and User-Unhandled. When you check Thrown
for any category or individual exception, it breaks when the exception occurs instead of wait-
ing to see whether the user handles the exception.

366 07 .42 The Exceptions Dialog Box

Additionally, you can use the following buttons.

Find
Helps you search for a specific exception.

Reset All
Puts exceptions back to their default settings.

Add
Allows you to add exceptions not currently in the list.

Delete
Lets you delete any added exceptions.

Special Case
You might find the User-Unhandled option missing from the Exceptions dialog box:

To get it back, go to Tools | Options | Debugging | General and select Enable Just My Code
(Managed Only):

 Chapter 7 Debugging 367

07.43 Setting a Breakpoint in the Call Stack Window

DEFAulT Ctrl+Alt+C

VISuAl BASIC 6 Ctrl+Alt+C; Ctrl+L

VISuAl C# 2005 Ctrl+Alt+C; Ctrl+D, Ctrl+C; Ctrl+D, C

VISuAl C++ 2 Ctrl+Alt+C; Ctrl+K; Alt+6

VISuAl C++ 6 Ctrl+Alt+C; Alt+7

VISuAl STuDIO 6 Ctrl+Alt+C

WInDOWS Alt,D, W, C

mEnu Debug | Toggle Breakpoint

COmmAnD Debug .CallStack

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0008

Did you know that breakpoints can be set inside the Call Stack window? This tip shows how
to do it.

First, set a breakpoint deep in series of calls to get a nice call stack.

Note If you don’t have a call stack handy, just make several methods called One, Two, Three,
and so forth and have them call each other, as I have done in these examples.

Run your code, and let it stop at the breakpoint. Bring up your Call Stack window (Ctrl+Alt+C
or Debug | Windows | Call Stack):

Click somewhere in the call stack you would like to stop at as it unwinds, and press F9:

368 07 .43 Setting a Breakpoint in the Call Stack Window

It sets a breakpoint. You can verify this by looking in your Breakpoints window:

Now just press F5 to continue, and watch as the debugger stops at the place you told it to:

 Chapter 7 Debugging 369

07.44 Setting a Tracepoint in the Call Stack Window

DEFAulT Ctrl+Alt+C

VISuAl BASIC 6 Ctrl+Alt+C; Ctrl+L

VISuAl C# 2005 Ctrl+Alt+C; Ctrl+D, Ctrl+C; Ctrl+D, C

VISuAl C++ 2 Ctrl+Alt+C; Ctrl+K; Alt+6

VISuAl C++ 6 Ctrl+Alt+C; Alt+7

VISuAl STuDIO 6 Ctrl+Alt+C

WInDOWS Alt,D, W, C

COmmAnD Debug .CallStack

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0009

In vstipDebug0008 (“Setting a Breakpoint in the Call Stack Window,” page 367), I showed
you a classic technique of setting a breakpoint in the Call Stack window. The only problem is
that breakpoints tend to be somewhat intrusive if all you want is information. So I thought it
would be a good idea to also show how to set tracepoints. For more information about tra-
cepoints, see vstipDebug0010 (“Setting a Tracepoint in Source Code,” page 325).

 1. Set a breakpoint deep in series of calls to get a nice call stack.

Note If you don’t have a call series handy, just make several methods called One, Two,
Three, and so forth, and have them call each other, as I have done in these examples.

 2. Run your code, and let it stop at the breakpoint.

 3. Bring up your Call Stack window (Ctrl+Alt+C or Debug | Windows | Call Stack):

 4. Right-click some place in the stack where you would like to set a tracepoint, and go to
Breakpoint | Insert Tracepoint:

370 07 .44 Setting a Tracepoint in the Call Stack Window

 5. You get the When Breakpoint Is Hit dialog box:

 6. You definitely want to get up to speed on the details of tracepoints if you aren’t familiar
with them (see vstipDebug0010, “Setting a Tracepoint in Source Code,” on page 325),
but for now, just click OK.

 7. Now we get our tracepoint. (Notice the diamond glyph.)

 8. Press F5 to continue the program and let the call stack unwind.

 9. Now bring up your Output window (Debug | Windows | Output), and notice that the
trace information is in there:

 Chapter 7 Debugging 371

07.45 Using the WPF Tree Visualizer

VERSIOnS 2010

CODE vstipDebug0004

The WPF Tree Visualizer started out as a CodePlex project and ended up in the product itself
as a visualizer. This tip shows how you can use it.

Note For those unfamiliar with WPF trees, you might want to review the article “Trees in WPF,”
at http://msdn.microsoft.com/en-us/library/ms753391(VS.100).aspx.

Enter Debug mode in any WPF project you have. Then take a look at a DataTip, the Watch
window, the Autos window, or the Locals window. For this example, let’s use the Autos
window:

Choose any control in the Autos window, and then click the magnifying glass way over to the
right of the control name:

http://msdn.microsoft.com/en-us/library/ms753391(VS.100).aspx

372 07 .45 Using the WPF Tree Visualizer

On the drop-down list, choose WPF Tree Visualizer to get the following dialog box:

This dialog box has a lot of moving parts, so let’s take a look at each one. First, the Visual
Tree section shows you the hierarchy of the controls:

Clicking on any particular node of the tree shows you the rendering at the bottom:

 Chapter 7 Debugging 373

Also, the selected control has its properties displayed in the large area to the right:

In both the Visual Tree and the Properties area, you can search or filter the results by typing
into the Search or Filter text boxes respectively:

Warning Watch out for the results because they might not be what you expect. See the extra
items in the list that don’t have the word “keyboard” in them? How did they get there? Well, if I
scroll to the right and look at other properties, you can see how it happened. Currently, there is
no way that I am aware of to change this behavior.

374 07 .46 Understanding Break All Processes When One Process Breaks

07.46 Understanding Break All Processes When One Process Breaks

mEnu Tools | Options | Debugging | General

COmmAnD Tools .Options

VERSIOnS 2005, 2008, 2010

CODE vstipDebug0029

In vstipEnv0015 (“Multiple Startup Projects,” page 48), we examined how to run multiple
projects at the same time. Now let’s explore what happens when you go into break mode on
the applications. By default, when you break one application, all the other applications break
too. Let’s take a look at an example.

You set a breakpoint in your first application that has a hit counter on it (see vstipDebug0019,
“Breakpoint Hit Count,” on page 314):

 Chapter 7 Debugging 375

But you don’t have any breakpoints in your second application:

When you run the applications, you get the following:

Both applications stop when one of them stops. This behavior is set in Tools | Options |
Debugging | General by selecting the Break All Processes When One Process Breaks check
box:

If you turn this feature off and run your applications again, you see the following
(predictable) result:

376 07 .47 Changing Context in the Locals Window

07.47 Changing Context in the Locals Window

DEFAulT Ctrl+Alt+V, L (locals);
Ctrl+5 then Alt+Down Arrow (process combo);
Ctrl+6 then Alt+Down Arrow (thread combo);
Ctrl+7 then Alt+Down Arrow (stack frame combo)

VISuAl BASIC 6 Ctrl+Alt+V, L (locals);
Ctrl+5 then Alt+Down Arrow (process combo);
Ctrl+6 then Alt+Down Arrow (thread combo);
Ctrl+7 then Alt+Down Arrow (stack frame combo)

VISuAl C# 2005 Ctrl+Alt+V, L (locals); Ctrl+D, Ctrl+L (locals); Ctrl+D, L (locals);
Ctrl+5 then Alt+Down Arrow (process combo);
Ctrl+6 then Alt+Down Arrow (thread combo);
Ctrl+7 then Alt+Down Arrow (stack frame combo)

VISuAl C++ 2 Ctrl+Alt+V, L (locals); Alt+3 (locals);
Ctrl+5 then Alt+Down Arrow (process combo);
Ctrl+6 then Alt+Down Arrow (thread combo);
Ctrl+7 then Alt+Down Arrow (stack frame combo)

VISuAl C++ 6 Ctrl+Alt+V, L (locals); Alt+4 (locals);
Ctrl+5 then Alt+Down Arrow (process combo);
Ctrl+6 then Alt+Down Arrow (thread combo);
Ctrl+7 then Alt+Down Arrow (stack frame combo)

VISuAl STuDIO 6 Ctrl+Alt+V, L (locals); Ctrl+Alt+L (locals);
Ctrl+5 then Alt+Down Arrow (process combo);
Ctrl+6 then Alt+Down Arrow (thread combo);
Ctrl+7 then Alt+Down Arrow (stack frame combo)

WInDOWS Alt,D, W, L (locals)

mEnu Debug | Windows | Locals

COmmAnD Debug .Locals; Debug .LocationToolbar .ProcessCombo; Debug .LocationToolbar .ThreadCombo;
Debug .LocationToolbar .StackFrameCombo

VERSIOnS 2005, 2008, 2010

CODE vstipTool0101

Most people are familiar with the Locals window. For those who aren’t, it displays variables
local to the current context or scope. Information often appears in the Locals window, but
the information will not be current until the next time the program breaks.

Even those who are familiar with the Locals window might not know that you can change the
context. When you are in break mode, bring up the Locals window (Ctrl+Alt+V, L):

 Chapter 7 Debugging 377

Debug Location Toolbar
You can use the Debug Location toolbar to change the context of the Locals window. If you
don’t have it up, you can right-click any toolbar and select Debug Location to make it appear:

Process
If you have multiple processes running, you can use the Process combo box (Ctrl+5) to
change between them. In this example, we only have one process running:

Thread
The Thread combo (Ctrl+6) lets you change the thread context to different threads. While
not of much use in this example, it is very useful in debugging multithreaded applications:

Stack Frame
The stack frame is probably the more common item you use when dealing with the Locals
window. The Stack Frame combo box (Ctrl+7) allows you to switch between items in the call
stack:

378 07 .48 Understanding the Autos Window

Currently, we’re in the one method and the Locals window shows the following:

Let’s change to another method in our code:

Now our Locals window shows the following:

Now you too can take advantage of the Debug Location toolbar to change your context and
get new information in the Locals window.

07.48 Understanding the Autos Window

DEFAulT Ctrl+Alt+V, A

VISuAl BASIC 6 Ctrl+Alt+V, A

VISuAl C# 2005 Ctrl+Alt+V, A; Ctrl+D, Ctrl+A; Ctrl+D, A

VISuAl C++ 2: Ctrl+Alt+V, A

VISuAl C++ 6 Ctrl+Alt+V, A

VISuAl STuDIO 6 Ctrl+Alt+V, A

WInDOWS Alt,D, W, A

mEnu Debug | Windows | Autos

COmmAnD Debug .Autos

VERSIOnS 2005, 2008, 2010

CODE vstipTool0103

 Chapter 7 Debugging 379

The Autos window looks a lot like the Locals window, but let’s take a closer look. According
to the MSDN website (http://msdn.microsoft.com/en-us/library/aa290702(VS.71).aspx), here is
what it does:

“The Autos window displays variables used in the current statement and the previous
statement. (For Visual Basic, it displays variables in the current statement and three
statements on either side of the current statement.)”

The current statement is the statement at the current execution location (the statement that
will be executed next if execution continues). The debugger identifies these variables for you
automatically, hence the window name.”

Changing Values
Just like the Locals window, you can change values in the Autos window:

Current and Previous Statement

Simple Example
OK let’s break this down. The Autos window does, in fact, show variables used in the current
statement and previous statement. Following is a simple example in C# with some variables:

As you can see, it just shows the variable on the current line and the one before it—nothing
else. Even though several lines have variables around them, the Autos window is not con-
cerned with those variables. Now compare this to the Locals window that shows every vari-
able in scope:

380 07 .48 Understanding the Autos Window

Another Example
I thought it would be instructive to see, step-by-step, how this works. Here I have stopped in
some code:

Notice that it shows the current variable and the object variable that exists all the time. Now I
go down two lines:

 Chapter 7 Debugging 381

All I’m left with is the object variable. I go down another three lines:

Now I can see that “eLocal” is about to be used, and I go down one more line:

I can finally see that “eLocal” has changed, and “d” has shown up again because it is being
used on the current line.

VB Shows Three Statements on Either Side
In versions prior to 2010, VB would, in fact, show three statements on either side of the cur-
rent line. This is no longer true in Visual Studio 2010. The Autos window in Visual Basic acts
just like the C++ and C# Autos windows and shows only the current line and the one prior.

 383

Part II

Extensions for Visual Studio

In this part:
Chapter 8: Visual Studio Extensions . 385

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 385

Chapter 8

Visual Studio Extensions
The new code editor is one of the most impressive improvements of the Visual Studio
2010 Integrated Development Environment (IDE). Built on top of Windows Presentation
Foundation (WPF) and the Managed Extensibility Framework, the combination of user interface–
rich flexibility plus plug-in extensibility takes innovation within Visual Studio to the next level.

Introducing Visual Studio Extensions
In addition to the editor, the Visual Studio 2010 IDE introduces a new WPF-based shell. Many
core user interface features are now WPF-based, including menus, window layouts, toolbars,
start page, and so forth.

Even if you’ve never developed any applications for use within Visual Studio, it is important
to know that the SDK tooling has significantly improved, paving the way for a much richer
Visual Studio ecosystem.

Gone are the days of requesting a package load key or a shell load key to develop Visual
Studio applications. No more having to make modifications to the registry to install a Visual
Studio plug-in.

The goals of this chapter are twofold: to provide a basic overview on how to find and install
extensions and to catalogue the “must-have” extensions available for free for the Visual
Studio 2010 IDE.

Welcome to the new world of Visual Studio extensions.

Installing an Extension
The development experience has greatly improved for Visual Studio 2010, providing addi-
tional ways for installing extensions. The preferred and most straightforward way to install an
extension is through a new Visual Studio 2010 feature called the Extension Manager. Located
within the IDE, the Extension Manager searches an online gallery, called the Visual Studio
Gallery, for extensions. The Extension Manager also manages the installed and currently in-
use extensions.

386 Chapter 8 Visual Studio Extensions

Installing from the Extension Manager
To open the Extension Manager from within Visual Studio, go to Tools | Extension Manager.
To search for an extension online, select Online Gallery in the left navigation pane. Type in
the name of the extension to search for within the Search Online Gallery text box. For ex-
ample, you can search for “Color Theme Editor” to find the Visual Studio Color Theme Editor
extension.

When the desired extension is found, click the Download button to install. When the install
has completed, a message appears at the bottom of the Extension Manager dialog box, as
shown in the following illustration.

A Visual Studio restart is required for all extensions, except for templates. Click Restart Now
to restart Visual Studio and enable the extension.

Installing from the Visual Studio Gallery
Another addition to Visual Studio 2010 is the Visual Studio Gallery, a website that provides
a catalog of free and commercial extensions for Visual Studio. Naturally, developers writing
extensions have the option of hosting the extension on their own websites, but hosting in the
Visual Studio Gallery greatly increases discoverability of the extension. Additionally, you can
find a significant number of tools for all past Visual Studio IDE versions from 2002 onward in
the Visual Studio Gallery.

 Chapter 8 Visual Studio Extensions 387

The Visual Studio Gallery is located at www.visualstudiogallery.com. To browse for extensions
built for Visual Studio 2010, click Browse and then select Visual Studio 2010 under Visual
Studio Versions in the left navigation bar.

When the desired extension is found, click the Download image link to begin the download
and installation.

You can either open the .vsix file to begin the installation or save the file to install at a later
time. If you chose to save the file, you can double-click the .vsix file at any time to start the
installation. Otherwise, simply click Open to begin installing the extension. The Visual Studio
Extension Manager prompts you to accept a license if one was provided with the extension.

A restart is required to finish installing the extension. The Extension Manager shows a “restart
required” message at the bottom of the dialog box. A Visual Studio restart is required for all
extensions, except for templates. Click Restart Now to restart Visual Studio and enable the
extension.

Installing Through Xcopy
Because the SDK tooling has been greatly simplified, such that registry modifications are no
longer necessary, it is possible to install an extension simply by copying the extension file
into a specific Visual Studio folder. This method of installation through copying files is known
as Xcopy deployment.

All installed extensions can be found in an unzipped format at the following location:

%LocalAppData%\Microsoft\VisualStudio\10.0\Extensions\<Company>\<Product>\<Version>

Extensions installed through the Xcopy method are disabled by default within Visual Studio.
You must manually enable the extension, as described next.

To install an extension through this method, you must do the following:

 1. Unzip the .vsix file.

 2. Copy the .vsix raw folder into the Extensions folder.

 3. Start Visual Studio, and enable the extension in the Extension Manager.

388 Chapter 8 Visual Studio Extensions

Conversely, you can uninstall any extension simply by deleting its corresponding folder from
the %LocalAppData%\Microsoft\VisualStudio\10.0\Extensions directory.

Inside a .vsix File
Although creating extensions is beyond the scope of this book, it’s important to be aware
how content written by members of the community is installed and run on your computer,
especially in the case where you need to troubleshoot a faulty extension.

All Visual Studio extensions use the .vsix file extension. A .vsix file is a .zip file (with its file ex-
tension renamed to .vsix) that uses the Open Packaging Convention to package the code and
manifest for the extension. You can read more about the contents of a .vsix file on Quan To’s
blog at http://blogs.msdn.com/b/quanto/archive/2009/05/26/what-is-a-vsix.aspx.

As described on Quan To’s article, the .vsix file is derived from the Visual Studio Installer
found in the Visual Studio 2005 and 2008 versions. The original .vsi file launches the Content
Installer from these past Visual Studio versions. The .vsi file represented many various types
of content for the Visual Studio IDE (macros, add-ins, toolbox controls, code snippets, and so
forth). To make the distinction clearer from this previous method of installing content, an ‘x’
was placed at the end of the extension, hence a .vsix file.

For more information about the Open Packaging Convention, please see the article titled
“A New Standard For Packaging Your Data,” at http://msdn.microsoft.com/en-us/magazine/
cc163372.aspx.

Disabling an Extension
If you need to disable an extension for any reason—for example, the Visual Studio perfor-
mance is slower than expected, the IDE crashes repeatedly, or the extension is simply not
working—you can disable an extension via Extension Manager.

Select Installed Extensions in the left navigation pane of the Extension Manager, and then
click Disable on any extension in the list. Again, a restart is required to disable the extension.

Note You can disable or re-enable multiple extensions at the same time within the Extension
Manager, requiring only one restart of the Visual Studio IDE.

http://blogs.msdn.com/b/quanto/archive/2009/05/26/what-is-a-vsix.aspx
http://msdn.microsoft.com/en-us/magazine/cc163372.aspx
http://msdn.microsoft.com/en-us/magazine/cc163372.aspx

 Chapter 8 Visual Studio Extensions 389

Uninstalling an Extension
The most straightforward way to uninstall an extension is through the Extension Manager.
Select Installed Extension in the left navigation pane of the Extension Manager, and
then click Uninstall on any extension in the list. Again, a restart is required to remove the
extension.

Note You can uninstall or reinstall multiple extensions at the same time within the Extension
Manager, requiring only one restart of the Visual Studio IDE.

The other way to uninstall an extension is to delete the contents of the extension from the
Visual Studio extension folder on your hard drive. Simply delete the extension .vsix file from
the %LocalAppData%\Microsoft\VisualStudio\10.0\Extensions directory, and restart Visual
Studio.

Resources for Developing Extensions
As noted, creating and developing extensions are beyond the scope of this book. However,
many great resources are available, such as the following:

●● Visual Studio Extensibility Developer Center—http://msdn.com/vsx

●● Extensibility samples—http://code.msdn.microsoft.com/vsx

08.01 Create Themes Using All Visual Studio Elements

nAmE Visual Studio Color Theme Editor

CREATED By Matthew Johnson (Microsoft)

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/
en-us/20cd93a2-c435-4d00-a797-499f16402378?SRC=Home

You can use the Visual Studio Color Theme Editor to create themes consisting of colors that
go beyond those listed in the Tools | Options | Fonts And Colors page.

Visual Studio Color Theme Editor
The most useful feature of the Visual Studio Color Theme Editor extension is that it provides
a central location for controlling almost all possible colors in the IDE. No more having to edit
individual fonts and colors options under Tools | Options. Refer to the “To Customize” section
later in this section for more information about how to use this feature.

390 08 .01 Create Themes Using All Visual Studio Elements

To Use
A Theme menu option is located on the Visual Studio file menu. The Theme menu lists mul-
tiple themes for you to choose from, including the Windows Classic look.

To Customize
You can create your own themes by clicking Theme | Customize Colors and choosing from
hundreds of customized colors. This list of colors is significantly longer than the list found on
the Tools | Options | Fonts And Colors page, because this extension lists every user interface
element that implements the Visual Studio color service.

 Chapter 8 Visual Studio Extensions 391

You can create new themes by clicking the Save button located in the toolbar in the upper-
left corner. All themes are saved as .xml files, using the .vstheme file extension name. You can
share a .vstheme file with others.

More Information
Make sure you check out the extension developer’s blog post at http://blogs.msdn.com/
visualstudio/archive/2010/01/04/changing-visual-studio-s-color-palette.aspx for an in-depth
overview of the extension.

08.02 Insert Images into Your Code

nAmE Image Insertion

CREATED By Microsoft

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/en-us/793d16d0-235a-439a-91df-4ce7c721df12

The Image Insertion tool allows you insert images, such as a UML diagram, directly into your
code. Another example is including user interface designs within your code for documenta-
tion purposes.

392 08 .02 Insert Images into Your Code

Image Insertion
Regardless of usage, the Image Insertion extension demonstrates that the Visual Studio 2010
editor is new and that creative extensions are possible.

Recall that the Visual Studio code editor is written using the Windows Presentation
Foundation (WPF). The following illustration shows a Silverlight illustration of a hand-drawn
stick figure at 100 percent zoom.

When the editor zoom is increased to 200 percent, notice how both the text and the stick
figure image increase at the same ratio.

 Chapter 8 Visual Studio Extensions 393

It is worth mentioning that this is not a separate designer built solely for this purpose. This is
the actual Visual Studio code editor displaying the image.

To Use
Select an image from either a Windows Explorer window or Solution Explorer, and drag the
image onto the editor surface. To successfully insert the image, you must see the blue place-
holder line, as shown in the following illustration. Also note that Visual Studio inserts the im-
age directly above the blue line.

To remove the inserted image, place the mouse directly over the image until a Close button
appears. Click the X button in the upper-right corner to remove the inserted image. The user
interface is sensitive, so it is best to move the mouse slowly towards the X button to avoid
having the controls disappear.

To resize the inserted image, use the mouse to grip the arrow controls, just as you would re-
size any standard window.

To Save
The images are not saved as part of the code file. The images are saved in a separate .resx
file. In this example, because the image is inserted in a Page.xaml.cs file, the image is saved in
a Page.xaml.Images.resx file, which is viewable in Solution Explorer. Most source control man-
agement systems allow users to customize whether .resx files should be included in a source
code check-in.

To Customize
Although this extension doesn’t come with any options to configure, the source code is avail-
able for tweaking at http://editorsamples.codeplex.com.

394 08 .03 Add Visual Guidelines to Your Code

08.03 Add Visual Guidelines to Your Code

nAmE Editor Guidelines, Editor Guidelines UI

CREATED By Paul Harrington (Microsoft)

lOCATIOnS http://visualstudiogallery.msdn.microsoft.com/0fbf2878-e678-4577-9fdb-9030389b338c
http://visualstudiogallery.msdn.microsoft.com/en-us/7f2a6727-2993-4c1d-8f58-ae24df14ea91

The Editor Guidelines displays vertical lines within your code to help you visualize regions,
end of printable margins, and so forth.

Editor Guidelines
Although this feature has been in many previous versions of Visual Studio, it was necessary
to modify the registry to use the feature. This extension brings the guidelines feature back to
Visual Studio 2010 and includes options within the Visual Studio IDE to modify the guidelines.

To Install
The Editor Guidelines extension consists of two extensions:

●● Editor Guidelines (http://visualstudiogallery.msdn.microsoft.com/en-us/0fbf2878-e678-
4577-9fdb-9030389b338c)—This extension brings back the guidelines feature; however,
it requires modifications to the registry to use the guidelines.

●● Editor Guidelines uI (http://visualstudiogallery.msdn.microsoft.com/en-us/7f2a6727-
2993-4c1d-8f58-ae24df14ea91)—This extension provides options within Visual Studio
to use the guidelines, instead of manually editing the registry

Note The Editor Guidelines UI extension is an extension of the Editor Guidelines extension. The
ability to extend an extension from another extension is a feature of the Managed Extensibility
Framework. To install the Editor Guidelines UI extension, the Editor Guidelines extension must be
installed first; otherwise, the Extension Manager displays an error message.

 Chapter 8 Visual Studio Extensions 395

To Use
If you plan to use only the first extension, you need to manually edit the registry, so use at
your own risk! The registry key for the guidelines feature is the same as in previous versions
of Visual Studio: [HKEY_CURRENT_USER]\Software\Microsoft\VisualStudio\10.0\Text Editor.

You need to create a new REG_SZ string called “Guides” to store the information for the
guideline. For example, the string “RGB(0,255,0) 100” sets a green guideline on column 100.
To add additional guidelines, add the other column numbers to the Guides value separated
by commas, such as RGB(0, 255, 0) 5, 60, 100.

If you have the Editor Guidelines UI extension installed, things are a lot simpler.

Right-click wherever you wish to place the guideline, and from the context menu, select Add
Guideline.

To remove the guideline, place your cursor on the column where you wish to remove the
guideline, right-click, and select Remove Guideline.

To Customize
To customize the colors for the guideline, select Guideline Color from the context menu,
and select colors from the color palette window.

08.04 Get More IntelliSense in Your XAML Editor

nAmE XAML IntelliSense Presenter

CREATED By Karl Shifflett

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/1a67eee3-fdd1-4745-b290-09d649d07ee0

The XAML IntelliSense Presenter extension allows you to use the new Pascal casing and list
filtering IntelliSense features in your XAML code.

XAML IntelliSense Presenter
If you’ve grown accustomed to the new Pascal casing and list filtering features in IntelliSense,
you’ll be happy to know that the Visual Studio 2010 XAML Editor IntelliSense extension gives
you these features and more in the XAML editor.

396 08 .05 Sync the Solution Explorer to the Current File

To Use
Start typing in any XAML editor to bring up IntelliSense. As you start typing, you can see the
Pascal case narrowing the available selection. The Pascal case narrowing filter option is en-
abled by default, as circled in the following illustration.

You can also toggle whether code snippets, namespaces, or element tags appear in
IntelliSense.

For More Information
Check out the developer’s blog post for this extension: http://karlshifflett.wordpress.
com/2010/03/21/visual-studio-2010-xaml-editor-intellisense-presenter-extension.

08.05 Sync the Solution Explorer to the Current File

nAmE Solution Explorer Tools

CREATED By Chris McGraph

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/ef4ac3e9-d056-4383-8ca2-11721bd879b4

The Solution Explorer Tools extension provides you with greater control over how and when
the Solution Explorer syncs to the currently opened document.

 Chapter 8 Visual Studio Extensions 397

Solution Explorer Tools
The Solution Explorer Tools extension provides additional features on the Solution Explorer
toolbar for controlling the opened solution.

To Use
For this extension to work properly, you must uncheck the Track Active Item in Solution
Explorer option found on the Tools | Options | Projects and Solutions | General page.

When the Tools extension is installed, several new buttons appear on the Solution Explorer
toolbar, as shown in the following illustration.

The following list describes the buttons from left to right:

●● Sync Item—This command places the active selection in the Solution Explorer to the
currently opened document.

●● Collapse All—This command recursively collapses everything in the Solution Explorer.

●● Collapse to Item—This command combines the two previous commands by placing
the active selection in the Solution Explorer to the currently opened item and collaps-
ing everything else in the Solution Explorer.

You can also assign keyboard shortcuts to each of the following commands on the Tools |
Options | Environment | Keyboard page:

●● Project.SyncItem

●● Project.Collapseall

●● Project.CollapseToItem

398 08 .06 Add PowerCommands Options to the IDE

08.06 Add PowerCommands Options to the IDE

nAmE PowerCommands

CREATED By Microsoft

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/en-us/e5f41ad9-4edc-4912-bca3-91147db95b99

The PowerCommands extension provides additional tweaks for customizing the IDE.

PowerCommands for Visual Studio 2010
The PowerCommands have been a popular add-in for the past several previous versions of
Visual Studio.

To Use
The PowerCommands extension provides additional options for customizing the IDE. These
options are found on the Tools | Options | PowerCommands | General and Commands pages.

The following is a list of each of the PowerCommands options to help you discover all the
ways you can further customize the IDE:

●● Format Document On Save—Saving the file automatically formats the document.

●● Remove And Sort usings On Save—Saving the file automatically removes any un-
used using statements. This option automatically sorts all using statements in alpha-
betical order.

●● Remove and Sort usings—This command can be found on the Solution Explorer con-
text menu at both the Solution level and at the individual project levels. It preforms the
same functionality as the previous command.

●● Clear All Panes—This command clears all Output Window subwindows at once. The
Clear All Panes button is located just to the right of the Show Output From drop-down
list on the Output Window toolbar.

●● Copy Path—This command copies the full file path of the currently selected item in
the Solution Explorer to the clipboard. It works with the solution node, a project node,
any project item node, and any folder.

●● Email Code Snippet—Select code in the editor, right-click to open the context menu,
and select Email Code Snippet to email the code snippet. The subject of the generated
email is based on the file name—for example, “Subject: CodeSnippet from Program.cs”.

●● Insert Guid Attribute—To add a GUID attribute to a class, right-click anywhere within
the class and select Insert Guid Attribute from the context menu.

 Chapter 8 Visual Studio Extensions 399

●● Show All Files This option places an additional Show All Files button on the Solution
Explorer toolbar. The leftmost Show All Files button is for the current project, and the
rightmost Show All Files button is for the entire solution.

●● undo Close To reopen the most-recently closed document, go to Edit | Undo Close.
The keyboard shortcut is Ctrl+Shift+Z. The cursor is placed at its last known position.
To see a list of all the most-recently closed documents, go to View | Other Windows |
Undo Close Window.

●● Collapse Projects To collapse everything under a project node, including any sub-
nodes (this being the key difference from the standard Windows behavior), right-click
and select Collapse Project from the Solution Explorer context menu. This command
works for solutions, projects, and solution folders.

●● Copy Class / Paste Class To copy and paste a class, select a project item (usually a
class file) on the Solution Explorer that you want to copy. Right-click and select Copy
Class from the context menu. Navigate to the project node, and right-click to see the
Paste Class command.

●● Copy As Project Reference Found on the Solution Explorer context menu, this com-
mand copies a project (from its project node) and pastes it into another project node
as a project reference.

●● Edit Project File The Edit Project File option unloads a project and automatically
opens the file in the editor for editing.

●● Open Containing Folder Similar to the command found on the file tabs and in the
Solution Explorer for a node, this command opens the containing folder for an item in
the Solution Explorer.

●● Open Command Prompt This option opens a Visual Studio command prompt di-
rectly from the Solution Explorer.

●● unload Projects / Reload Projects Similar to the built-in command for unloading a
project, the Unload Projects command (found on the Solution Explorer context menu
for a project node) unloads all the projects in a solution.

●● Extract Constant Found under the Refactor menu, the Extract Constant creates a
constant based on the selected text.

●● Clear Recent File list This command removes specified recent files. In past versions
of Visual Studio, this clearing required manual modifications to the registry. The com-
mand is found on the File | Recent Files menu as Clear Recent File List. This command
opens a window for you to specify which files to clear.

●● Clear Recent Project list Similar to the Clear Recent File List, this command removes
projects specified by the user.

400 08 .07 Use Emacs Commands in the Editor

●● Close All Found on the file tab context menu, this command closes all open
documents.

For More Information
For more information about the PowerCommands extension, you can read the following blog
post: http://saraford.net/2010/09/07/power-commands-for-visual-studio-2010-extension-8.

08.07 Use Emacs Commands in the Editor

nAmE Emacs Emulation

CREATED By Microsoft

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/en-us/09dc58c4-6f47-413a-9176-742be7463f92

The Emacs Commands extension provides basic support for Emacs keybindings and text edit-
ing commands.

Emacs Emulation
This extension brings back the Emacs commands for the Visual Studio 2010 editor.

To Use
To finish installing the extension, you must open a project or create a new project. Opening a
project prompts you for elevated permissions to finish installing the Emacs.vsk file (the Emacs
keyboard shortcut file) to the Visual Studio IDE folder located under Program Files directory.
Elevated permissions are required because only user accounts with administrator privileges
can reach this folder by default in Windows.

Select Emacs in the Tools | Options | Environment | Keyboard page’s scheme drop-down list
to enable the Emacs emulation experience.

 Chapter 8 Visual Studio Extensions 401

To Uninstall
When you disable or uninstall the extension, the Emacs option remains selected in the Tools |
Options | Keyboard list. You must go back to the Tools | Options | Environment | Keyboard
page and select the “(Default)” key bindings or your preferred keyboard mapping scheme.

If you forget to change the keyboard mapping scheme, you’ll notice a great many commands
and keyboard shortcuts not working in the editor, such as Ctrl+F for the Find window.

Because administrator rights were required to add this file, you also need administrator rights
to remove it. Unlike the install scenario for opening or creating a project, there isn’t an op-
portunity for the extension to prompt you to remove the .vsk file. For example, the extension
cannot prompt you the next time you open a project (as in the install scenario) because the
extension itself is already gone.

You can manually delete the Emacs.vsk file at your own risk, but there is no impact to Visual
Studio if you decide to keep the file.

More Information
You can find more information about all the Emacs keyboard shortcuts supported by
the extension at the following location: http://visualstudiogallery.msdn.microsoft.com/
en-us/09dc58c4-6f47-413a-9176-742be7463f92.

08.08 Submit to “The Daily WTF”

nAmE The Daily WTF

CREATED By Inedo .com

lOCATIOn http://inedo.com/Downloads/SubmitToWTF.aspx

SOuRCE CODE lOCATIOn http://code.google.com/p/submittotdwtf

VERSIOnS 2005, 2008, 2010

Have you ever inherited source code so poorly written that you’ve asked a colleague to come
into your office to take a look? If so, this extension is for you.

Share Bad Code with the World
Started in May 2004, “The Daily WTF” (also known as “The Daily Worse Than Failure”) is a
blog dedicated to poorly written code, poor project management decisions, and bizarre in-
terview stories.

This extension allows you to submit a code snippet directly from your code editor to
“The Daily WTF.” It is the equivalent of using the website’s contact form to submit a code
suggestion.

402 08 .09 Diff Files Using the Editor

It is a little-known fact that Sara Ford’s writing style for the “Visual Studio 2008 Tip of the
Day” series was inspired by Alex Papadimoulis’ writing style for “The Daily WTF.” The idea of
providing personal commentary alongside factual information was very appealing for a daily
tip series. (Thank you, Alex!)

To Install
At the time of this writing, this extension is not located on the Visual Studio Gallery.

You can download the extension from http://inedo.com/Downloads/SubmitToWTF.aspx. Links
for both Visual Studio 2010 and Visual Studio 2005/2008 appear on the page. After you have
downloaded the extension, unzip the folder and double-click the SubmitToWTF2010.vsix file.

To Use
Select code within a code editor, and open the context menu to see the Submit To TDWTF
command appear. Click the Submit To TDWTF command to open a dialog box that requests
additional information about the code snippet. Additionally, there is an option to request
that the code snippet is not published.

More Information
You can find more information about The Daily WTF at http://thedailywtf.com.

08.09 Diff Files Using the Editor

nAmE CodeCompare

CREATED By Devart Software

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/dace3633-0b51-4629-85d4-c59cdce5bb3b

VERSIOnS 2008, 2010

You can compare code side-by-side within the Visual Studio Editor by using the
CodeCompare extension.

CodeCompare
The CodeCompare tool uses the Visual Studio code editor to compare two files side-by-side,
allowing you to continue using all the Visual Studio code editor functionality, like syntax col-
oring, IntelliSense, Ctrl+Mouse Wheel zooming, and so on.

 Chapter 8 Visual Studio Extensions 403

To Install
The CodeCompare tool does not use the new Visual Studio Extensibility model, so it is not
found in the Extension Manager. To install, run the executable file hosted on the Visual
Studio Gallery and follow the instructions in the setup wizard.

To Use
To start the CodeCompare tool, go to Tools | CodeCompare | New Comparison. This action
opens a new code comparison view alongside your code files using the Visual Studio code
editor. Simply select two different files to compare to start seeing a visual representation of
the differences between the files.

Features
CodeCompare is a fully functional code comparing tool, but a few features are worth men-
tioning, including the following:

●● merge Code Move code from one comparison view to the other. Each indicated line
that is different per view has a << or a >> symbol that illustrates it is possible to merge
that line or block of code to the other file.

●● Structure Comparison Compare code by its structure, namely its classes, fields, and
methods. This comparison is shown in the Difference Explorer. Oddly enough, in the
free version of CodeCompare, attempting to click within the Difference Explorer clears
its contents. The cursor focus must remain within the code editor for the Difference
Explorer to show the structural differences between the code files.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

404 08 .10 Run Windows PowerShell Within the IDE

●● new Folder Comparison Compare code at the file level. Select two folders, and the
compare tool shows you which files are different or not included. Double-click a file to
do a code comparison at the file level in a new window.

To Uninstall
Go to Windows Control Panel | Uninstall A Program window, and select the Devart
CodeCompare application. Click the Uninstall command on the menu to uninstall
CodeCompare.

More Information
You can find more information about CodeCompare at http://www.devart.com/codecompare.

08.10 Run Windows PowerShell Within the IDE

nAmE PowerConsole

CREATED By Jianchun Xu (Microsoft)

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/67620d8c-93dd-4e57-aa86-c9404acbd7b3

VERSIOnS 2010

You can use the PowerConsole extension to run both Windows PowerShell commands and
Visual Studio object model (DTE) commands within the IDE.

To Use
To open the Power Console tool window, go to View | Other Windows | Power Console.

The Power Console allows you to run more than just Windows PowerShell commands.
Additionally, you can call the Visual Studio object model (DTE), access Visual Studio services,
interact with Visual Studio MEF components, and host your own scripting language within
the Power Console.

 Chapter 8 Visual Studio Extensions 405

More Information
You can find more information about the Power Console at http://visualstudiogallery.msdn.
microsoft.com/67620d8c-93dd-4e57-aa86-c9404acbd7b3.

08.11 Visualize OData in a Graphical View

nAmE Open Data Protocol Visualizer

CREATED By Microsoft

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/f4ac856a-796e-4d78-9a3d-0120d8137722

You can use the Open Data Protocol Visualizer extension to get a graphical view of an OData
service.

Open Data Protocol Visualizer
The Open Data Protocol Visualizer provides a read-only graphical view of the types and rela-
tionships provided by a WCF Data Service.

To Use
Create a service reference through the Add Service Reference dialog box. Open the context
menu for the service reference in the Solution Explorer, and select the new View In Diagram
command to open the visualizer.

At the bottom of the visualizer, select the elements you want to view, or select “all” to vi-
sualize everything. You can also browse elements by using the Open Data Protocol Model
Browser found under the View menu.

406 08 .12 Run VIM Commands in the Editor

More Information
You can find a video explaining how to use the Open Data Protocol Visualizer extension lo-
cated at http://odataprimer.com/ODataVisualizerExtensionForVS2010Screencast.ashx.

You can also find a list of OData services at http://www.odata.org/producers.

08.12 Run VIM Commands in the Editor

nAmE VsVim

CREATED By Jared Parsons (Microsoft)

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/59ca71b3-a4a3-46ca-8fe1-0e90e3f79329

SOuRCE CODE http://github.com/jaredpar/VsVim

The VsVim extension provides a Vim editing experience within the Visual Studio editor.

To Use
When enabled, the VIM extension immediately prompts you at the top of the editor to cus-
tomize how many Visual Studio keyboard shortcut defaults you want to use. You can make
additional modifications by clicking the Options button at the bottom of the editor next to
the VIM extension status bar, as shown in the following illustration.

More Information
You can find a frequently asked question list for the VIM extension located at https://github.
com/jaredpar/VsVim/wiki/faq.

 Chapter 8 Visual Studio Extensions 407

08.13 Check Spelling in Your Code

nAmE Spell Checker

CREATED By Noah Richards with Roman Golovin and Michael Lehenbauer

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/7c8341f1-ebac-40c8-92c2-476db8d523ce

You can check for spelling errors in your code by using the Spell Checker extension.

Spell Checker
The Spell Checker extension provides a spell checker within the Visual Studio editor.

To Use
The Spell Checker extension provides spelling corrections for plain text files, comments and
strings in source code, and text that isn’t included within HTML tags in .html and .aspx files.

The Spell Checker uses Smart Tags, meaning that you can simply press Ctrl+. to invoke the
Smart Tag window.

If you want the change the color of the red squiggles so that spelling errors are not confused
with syntax errors, you can go to the Tools | Options | Environment | Fonts And Colors page,
and under Display Items, select Spelling Error and change the Item Foreground color to the
appropriate color.

08.14 Zoom Across All Files

nAmE Presentation Zoom

CREATED By Chris Granger (Microsoft)

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/6a7a0b57-7059-470d-bcfa-60ceb78dc752

You can maintain a consistent zoom percentage across all open files using the Presentation
Zoom extension.

408 08 .14 Zoom Across All Files

Presentation Zoom
By default, the new Presentation Zoom extension in Visual Studio 2010 works only for the
current file. Additional files are not affected by the zoom. This is especially noticeable when
giving presentations, where the presenter has to zoom each file separately.

This extension provides a global zoom level, so all open files can share the same zoom level.

To Use
Simply use the zoom feature, either by Ctrl+Mouse wheel or updating the zoom percent-
age at the bottom-left corner of the editor. The next file opened or navigated to persists the
same zoom percentage.

Control Zooming with a Slider Using the ZoomEditorMargin Extension

nAmE ZoomEditorMargin

CREATED By Benjamin Gopp

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/c271d574-a481-4974-b7dd-f319404de898

Similar to the Presentation Zoom extension discussed in the preceding section, the
ZoomEditorMargin extension provides a slider control in the bottom-right corner of the edi-
tor for specifying the zoom percentage for the file in view. The ZoomEditorMargin extension
works in conjunction with the Presentation Zoom extension.

 Chapter 8 Visual Studio Extensions 409

08.15 View Code Blocks Using Vertical Lines

nAmE StructureAdornment

CREATED By David Pugh (Microsoft)

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/203f22f4-3e9f-4dbb-befc-f2606835834e

The StructureAdornment extension displays vertical lines in the editor to show the block
structure of the code file.

StructureAdornment
The StructureAdornment extension uses different colors to indicate different blocks.

To Use
By default, vertical lines appear in the editor. To see the beginning of a particular code block
that is outside the view, mouse-over the vertical line to display the beginning of that particu-
lar code block.

410 08 .15 View Code Blocks Using Vertical Lines

To Customize
This extension does not have a page in Tools | Options; however, you can manually edit the
registry settings for the extension. The following editor options are stored in the registry un-
der HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\10.0\Text Editor:

●● StructureAdornment/lineWidth Width of the lines used to show the various
scopes.

●● StructureAdornment/ClassColor Color used to show the scope of class definitions
as ARGB.

●● StructureAdornment/ConditionalColor Color used to show the scope of condition-
ally executed code as ARGB.

●● StructureAdornment/loopColor Color used to show the scope of loop bodies as
ARGB.

●● StructureAdornment/methodColor Color used to show the scope of method bod-
ies as ARGB.

●● StructureAdornment/unknownColor Color used to show the scope of unknown
blocks as ARGB.

●● StructureAdornment/methodSeparatorColor Color used draw a horizontal sepa-
rator line at the end of a method as ARGB (off by default).

●● StructureAdornment/Enabled Show structure adornments.

Modifications made to the extension appear the next time a code editor is opened.

To Uninstall
This extension installs five separate extensions. To completely remove this extension, you
need to remove the following extensions:

●● BlockTagger

●● BlockTaggerImpl

●● SettingsStore

●● SettingsStoreImpl

●● StructureAdornment

You can uninstall all five extensions at the same time within the Extension Manager. If
prompted about a Dependence Alert, click Uninstall Anyways to continue uninstalling all
extensions.

 Chapter 8 Visual Studio Extensions 411

08.16 Get a Bird’s-Eye View of Your Code in an Editor Margin

nAmE AllMargins

CREATED By David Pugh (Microsoft)

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/465a0d53-5133-4edd-a0cd-94484fe3d853

The AllMargins extension provides a complete overview of your code to improve navigation.

AllMargins
The AllMargins extension installs multiple extensions. The two most notable are the
OverviewMargin extension, a bird’s-eye view of the logical layout of your code all within an
editor margin, and the StructureAdornment extension, which displays vertical lines in the edi-
tor, representing structural code blocks.

See the extension “View Code Blocks Using Vertical Lines” for more information about the
StructureAdornment extension.

To Use
By default, both the StructureAdornment extension and the OverviewMargin extension are
visible in the editor. The OverviewMargin appears on the right side of the editor.

Mouse-over the left side of the OverviewMargin to see a code snippet for that particular sec-
tion of code.

412 08 .16 Get a Bird’s-Eye View of Your Code in an Editor Margin

Mouse-over the right side of the OverviewMargin to see the structural code block in a con-
densed form.

To Uninstall
This extension installs 12 separate extensions. To completely remove this extension, you need
to remove the following:

●● AllMargins

●● BlockTagger

●● BlockTaggerImpl

●● CaretMargin

●● ErrorsToMarks

●● MarkersToMarks

●● OverviewMargin

●● OverviewMarginImpl

●● SettingsStore

●● SettingsStoreImpl

●● StructureAdornment

 Chapter 8 Visual Studio Extensions 413

●● StructureMargin

You can uninstall all 12 extensions at the same time within the Extension Manager. If prompt-
ed about a Dependence Alert, click Uninstall Anyways to continue uninstalling all extensions.

08.17 Build Projects from the Windows 7 Taskbar

nAmE Win7 Taskbar Extension

CREATED By Dmitry Sitnikov

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/0c92dd87-50ac-489e-882b-b99de7624502

You can use the Win7 Taskbar Extension to start a build or debug session directly from the
Windows 7 taskbar.

Win7 Taskbar Extension
The Win7 Taskbar Extension allows you to start a build or debug session for the specified
Visual Studio application directly from the Windows 7 taskbar. This extension can save you
time when you need to build different projects located in multiple instances of Visual Studio.

To Install
The Win7 Taskbar Extension tool is an extension of the Windows 7 taskbar, so it is not found
in the Extension Manager. To install, run the executable file hosted on the Visual Studio
Gallery location and follow the instructions in the setup wizard.

To Use
Mouse-over any Visual Studio window in the Windows 7 taskbar to see the extension ap-
pear. Simply click the corresponding button for Build, Start Debugging, or Start Without
Debugging.

414 08 .18 Triple-Click to Select an Entire Line

To Uninstall
Open the Windows Control Panel | Uninstall a Program window, and select the Visual Studio
Win7 Taskbar Add-in application. Click the Uninstall command listed on the menu to remove
the extension.

08.18 Triple-Click to Select an Entire Line

nAmE Triple Click

CREATED By Noah Richards

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/2bbdc70c-32f7-4b69-8cff-d8190cae0cc7

SOuRCE CODE https://github.com/NoahRic/TripleClick

You can use the Triple Click extension to quickly select a line of code.

Triple Click
The Triple Click extension selects an entire line of code when the left mouse button is
triple-clicked.

More Information
For more information, please see the extension author’s blog post at http://blogs.msdn.
com/b/noahric/archive/2009/10/19/beta-2.aspx.

 Chapter 8 Visual Studio Extensions 415

08.19 Create Regular Expressions Within Your Code

nAmE Regex Editor

CREATED By Microsoft

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/55c24bf1-2636-4f94-831d-28db8505ce00

SOuRCE CODE http://editorsamples.codeplex.com

The Regex Editor helps you write regular expressions faster and easier.

Regex Editor
The Regex Editor extension is an aid for creating, testing, and saving regular expressions.

To Use
To invoke the Regex Editor window, you need to create a new Regex class within your code.
For example, type in the following:

Regex r = new Regex(

This opens the Regex Editor window, shown in the following illustration.

More Information
For more information, please visit the project’s homepage at http://editorsamples.codeplex.com.

416 08 .20 Get More Productivity Tools in the IDE

08.20 Get More Productivity Tools in the IDE

nAmE Visual Studio Productivity Power Tools

CREATED By Microsoft

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/d0d33361-18e2-46c0-8ff2-4adea1e34fef

The Visual Studio Productivity Power Tools are a collection of extensions intended to maxi-
mize a developer’s productivity.

To Use
The tools include a variety of IDE productivity tweaks, such as the following:

●● Tools Options Support Allows for all of the included tools to be turned on or off by
selecting Tools | Options | Productivity Power Tools.

●● Document Tab Well user Interface Customize the look and functionality of open
Visual Studio tabs.

●● Searchable Add Reference Dialog Replace the default Add Reference Dialog with a
dialog box that includes a substring search of the current pane.

●● Quick Access Search and execute common Visual Studio tasks.

●● Auto Brace Completion Improve code productivity by automatically inserting the
matching closing code construct for the following characters: (), {}, [], “”, and ‘’.

●● Highlight Current line Highlight the line in the code editor where the caret is
located.

●● HTml Copy Copy code to the Windows Clipboard using the HTML Clipboard format,
which makes it easy to retain code formatting.

●● Triple Click Triple-click anywhere on a line to select the entire line.

●● Fix mixed Tabs Fix files that have a mix between tabs and spaces.

●● Ctrl+Click Go to Definition Jump quickly to a symbol definition via Ctrl+Click.

●● Align Assignments Increase code readability by aligning variable assignments. To
use, press Ctrl+Alt+J.

●● move line up/Down Commands Hold down the Alt key while tapping the Up/
Down arrow to move the current line of code up or down.

●● Column Guides Everyone’s favorite Visual Studio registry modification, adding a ver-
tical line guide to the code editor, can be set via the code editor context menu.

●● Colorized Parameter Help Add syntax color coding to Parameter Help.

http://visualstudiogallery.msdn.microsoft.com/d0d33361-18e2-46c0-8ff2-4adea1e34fef/

 Chapter 8 Visual Studio Extensions 417

To Customize the Document Tab Well User Interface
By default, the extension changes the Document Tab Well by coloring and grouping tabs
based on their project, which is helpful when working with large solutions. You can customize
these default settings by selecting Tools | Options | Productivity Power Tools | Document Tab
Well.

Several preset configurations are available, including the following: Visual Studio 2008, Visual
Studio 2010, Web Browser, Scrollable Tab Well, Vertical Tab Well, and Dynamic Tab Well.

●● The Visual Studio 2008 and 2010 configurations act exactly as their names imply, caus-
ing the default tab well to behave like those versions of the IDE.

●● Both the Web Browser and Dynamic Tab Wells add file type icons to what would oth-
erwise be a typical Visual Studio 2010 tab. The difference between the two is that the
Dynamic Tab Well closes the least-recently used tab when there is no more space avail-
able in the file tab channel.

●● The Scrollable Tab Well is the default for the extension.

●● The Vertical Tab Well has the same characteristics as the Scrollable Tab Well but places
the tabs vertically, allowing for more viewable tabs.

It is possible to tweak all of the configurations. The ability to pin tabs is probably the most
useful customization. For example, you probably often want to view the contents of many
files while actually working on only one or two. The ability to pin specific tabs that you are
focusing on, to keep them from falling out of focus, is a huge time-saver. When you pin
many tabs, you can use the Show Pinned Tabs In A Separate Row/Column option. This keeps
the pinned tabs from taking up too much space.

418 08 .21 Create and Find Code Snippets

The biggest tab productivity boost comes in the form of added keyboard navigation. In
Windows, Ctrl+Tab switches to the next child window for a given program. It’s known that
many users do not prefer the Ctrl+Tab window that appears in Visual Studio. The Productivity
Power Tools extension offers the option of moving backward and forward in visual order via
Ctrl+Alt+Page Down/Up. Even more exciting, you can jump to a pinned tab via Ctrl+Num Pad
1 through 0. Talk about keyboard efficiency!

08.21 Create and Find Code Snippets

nAmE Snippet Designer

CREATED By Matt Manela

lOCATIOn http://visualstudiogallery.msdn.microsoft.com/B08B0375-139E-41D7-AF9B-FAEE50F68392

The Snippet Designer is an open source extension for Visual Studio that makes it easier to
create and manage code snippets.

Snippet Designer
The Snippet Designer extension adds both an editor for .snippet files as well as a tool window
to search for existing code snippets.

http://visualstudiogallery.msdn.microsoft.com/B08B0375-139E-41D7-AF9B-FAEE50F68392

 Chapter 8 Visual Studio Extensions 419

To Use
You can interact with the Snippet Designer within Visual Studio in several different ways, in-
cluding the following:

●● You can create a new code snippet from scratch by launching the new file dialog box
(File | New File) and then choosing Snippet Designer | Code Snippet. This launches the
Snippet Editor, which lets you enter the code snippet, create variable replacements, and
set metadata about the snippet.

●● You can create a snippet from existing code in your editor (for C#, Visual Basic,
JavaScript, SQL, XML, or HTML) by highlighting the text and choosing Export As
Snippet from the context menu. This launches the Snippet Editor prepopulated with the
highlighted code.

●● You can search for existing code snippets by launching the Snippet Explorer tool win-
dow at View | Other Windows | Snippet Explorer. This tool window enables you to per-
form text search on all the code snippets on your computer. From this window, you can
easily preview, edit, and delete any code snippet.

More Information
For more information about the Snippet Designer extension, including documentation,
source code, issue tracker, and forum discussions on its CodePlex page, visit http://snippetde-
signer.codeplex.com.

08.22 Document Your Code with Three Keystrokes

nAmE GhostDoc

CREATED By SubMain

lOCATIOn http://submain.com/download/ghostdoc

GhostDoc generates XML comments for your code by using a simple rules engine.

GhostDoc
Pairing this tool with a documentation generator such as NDoc (http://ndoc.sourceforge.net)
or SandCastle (http://www.sandcastledocs.com) can automate much of the work of docu-
menting your API.

To Use
GhostDoc adds a Document This command both to the Tools | GhostDoc menu and to the
code editor context menu. By default, this command is available using the keyboard shortcut
Ctrl+Shift+D.

http://snippetdesigner.codeplex.com
http://snippetdesigner.codeplex.com
http://ndoc.sourceforge.net/
http://www.sandcastledocs.com/

420 08 .22 Document Your Code with Three Keystrokes

When you invoke the command on a code element, the element’s name, parameters, and
context information are passed through the GhostDoc rules engine. The rules engine per-
forms a few linguistic tricks to produce a documentation comment that makes sense in the
context of your code.

GhostDoc can produce documentation comments for classes, interfaces, structs, enums, con-
structors, finalizers, methods, properties, fields, events, indexers, and delegates.

The generated documentation comments are not complete, but they do provide a great
starting point. The documentation comments in the code below were generated by
GhostDoc and have not been edited from the original output:

/// <summary>
///
/// </summary>
public class Request : IDisposable
{
 /// <summary>
 /// Initializes a new instance of the <see cref=”Request”/> class.
 /// </summary>
 public Request() {}

 /// <summary>
 /// Performs application-defined tasks associated with
 /// freeing, releasing, or resetting unmanaged resources.
 /// </summary>
 public void Dispose() {}

 /// Gets the status for user.
 /// </summary>
 /// <param name=”userId”>The user id.</param>
 /// <returns>
 /// <see cref=”API.RequestStatus”/> The request status
 /// </returns>
 public RequestStatus GetStatusForUser(string userId) {/* … */ }

 /// <summary>
 /// Gets a value indicating whether this instance is passive.
 /// </summary>
 /// <value>
 /// <c>true</c> if this instance is passive; otherwise, <c>false</c>.
 /// </value>
 public bool IsPassive { get; private set; }

 /// <summary>
 /// Gets or sets the timeout.
 /// </summary>
 /// <value>
 /// The timeout.
 /// </value>
 public TimeSpan Timeout { get; set; }
}

 Chapter 8 Visual Studio Extensions 421

Some conventions and niceties that drive GhostDoc:

●● Code symbols, such as parameter and member names, are split into words by case
changes. For example, “userId” becomes “user id.”

●● Certain common members, such as the Dispose method and equality members, are
recognized and documented with specific verbiage.

●● Method names are assumed to be describing an activity. For example, GetStatusForUser
is interpreted as “Gets the status for user.” When the method name contains only a
verb, such as Check, GhostDoc assumes the action applies to the class and documents
the method as “Checks this instance.”

●● Property names that start with certain words, such as “Is,” “Has”, “Can”, and so on, are
documented as state verifications. Property names containing a single word are docu-
mented as states. The documentation comment respects modifiers on property acces-
sors, so read-only properties are documented as such.

●● GhostDoc is smart enough to add references to types used in member signatures.

●● Documentation comments applied to base types and members are inherited in deriv-
ing types.

To Customize
You can customize the way GhostDoc treats individual code element from the Tools |
GhostDoc | Options page. The options for code-matching rules are extensive enough to
adapt to any coding culture that relies on consistent naming conventions.

From the GhostDoc options dialog box, you can also configure linguistic operations and ex-
port or import your GhostDoc settings.

More Information
For more information about the GhostDoc extension, see http://submain.com/products/
ghostdoc.aspx.

08.23 Customize Visual Studio Using Windows PowerShell

nAmE StudioShell

CREATED By Code Owls LLC

lOCATIOn http://studioshell.codeplex.com

StudioShell is a deeply integrated Windows PowerShell module that simplifies access to many
of the extensibility features of Visual Studio.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

422 08 .23 Customize Visual Studio Using Windows PowerShell

StudioShell
Using StudioShell, with only a few lines of PowerShell script you can perform activities that
typically require an add-in.

To Use
StudioShell ships with a hosted PowerShell console available from the main menu at View |
StudioShell. By default, this console is available using the keyboard shortcut Ctrl+Shift+Enter.

You can use StudioShell features in other hosted PowerShell consoles, such as NuGet (http://
nuget.codeplex.com) or PowerGUI VSX (http://powerguivsx.codeplex.com). From these con-
soles, enter the following command in your console to activate StudioShell:

Import-Module StudioShell

StudioShell exposes many of the extensibility features of Visual Studio as a drive named
“DTE.” This drive lets you explore and access the extensibility features as if they were a file
system on your local computer, using the same PowerShell commands you would use to ma-
nipulate files, the registry, and so on.

For example, you can see a list of existing Visual Studio window configurations by typing:

get-childitem dte:/windowConfigurations

You can create a new named window configuration by arranging your user interface and
then entering:

new-item dte:/windowConfigurations –name MyConfig

You can apply the new window configuration at any time using:

invoke-item dte:/windowConfigurations/MyConfig

The standard PowerShell item commands apply to every area of the DTE drive. For example,
you can use the same new-item command to create new project items:

new-item dte:/solution/projects/myProject –name MyClass.cs –type class

The Visual Studio features exposed on the DTE drive include the following:

●● user interface elements—Manipulate windows, modify menus, add custom com-
mands implemented in PowerShell, manage items to the task and error lists, and drop
data into the output pane.

●● Visual Studio settings—Script custom font and color settings for different
environments.

http://nuget.codeplex.com/
http://nuget.codeplex.com/
http://powerguivsx.codeplex.com/

 Chapter 8 Visual Studio Extensions 423

●● Solutions and Projects—Create new projects and project items, explore and manipu-
late your code model, or add and remove project references.

●● Breakpoints and the Debugger—Create and remove breakpoints, set tracepoint con-
ditions, write minidumps, or explore the current stack trace from the console.

StudioShell adds new features to Visual Studio as well, including the following:

●● Simple grid, chart, and graphing output windows usable from the console—For
example, use the console to get a list of code metrics and drop them in a graph.

●● Profile scripts for environment customization—For example, import any other
PowerShell modules you use regularly.

●● Solution script modules for per-solution environment customization—Modify
your menus and windows on a solution-by-solution basis.

To Get Help
StudioShell documentation is available within the console. To get started, type:

get-help about_studioshell

For information about using standard PowerShell commands on the DTE drive, navigate to
the area of the drive where you want to work and use the get-help command to retrieve
help for the command you want to use:

cd dte:/debugger/breakpoints
get-help new-item

To Customize
StudioShell settings are available from the Tools | Options dialog in the StudioShell pane.
You can indicate a specific console to use when StudioShell is invoked, including the default
StudioShell hosted console, the process console, or no console (for example, if you want
to use StudioShell from NuGet). In addition, you can change the profile script behavior of
StudioShell and enable startup activity logging.

You can customize your console session with any PowerShell module or script. To find scripts
relevant to your needs, visit the PowerShell Code Repository at http://www.poshcode.org.

More Information
For more information about the StudioShell module, see http://studioshell.codeplex.com and
http://www.beefycode.com/post/Announcing-StudioShell.aspx.

http://studioshell.codeplex.com/

 425

Appendix A

Visual Studio Keyboard Shortcut
Posters

Microsoft produces keyboard shortcut posters tailored for both general use and for each major
language. Knowing these shortcuts can dramatically help you in your day-to-day work. Get
these now. Seriously…now! This appendix lists the locations where you can find the posters:

Visual Studio 2010 Shortcuts
●● All languages 2010 http://go.microsoft.com/FWLink/?Linkid=220091

Visual Studio 2008 Shortcuts
●● C# 2008 http://go.microsoft.com/FWLink/?Linkid=220094

●● VB 2008 http://go.microsoft.com/FWLink/?Linkid=220111

●● C++ 2008 http://go.microsoft.com/FWLink/?Linkid=220112

Visual Studio 2005 Shortcuts
●● C# 2005 http://go.microsoft.com/FWLink/?Linkid=220113

●● VB 2005 http://go.microsoft.com/FWLink/?Linkid=220114

●● C++ 2005 http://go.microsoft.com/FWLink/?Linkid=220115

Note Wow! You’ve read all the tips in the book, and that’s super cool! As a thank you, we
would like to offer you even more tips online in the form of traditional New Orleans-
style lagniappe—a little something extra on the side. Make sure to download the appendix
full of lagniappe tips, free of charge, at http://go.microsoft.com/FWLink/?Linkid=223758.

http://go.microsoft.com/fwlink/?LinkId=220091
http://go.microsoft.com/fwlink/?LinkId=220094
http://go.microsoft.com/fwlink/?LinkId=220111
http://go.microsoft.com/fwlink/?LinkId=220112
http://go.microsoft.com/fwlink/?LinkId=220113
http://go.microsoft.com/fwlink/?LinkId=220114
http://go.microsoft.com/fwlink/?LinkId=220115

 427

Index

AutoRecover feature, 10–13, 57
Autos window, 348, 379–382

B
Begin A Group option (Modify

Selection), 36
blank lines

accidentally copying, 211
inserting above/below current

line, 218
Boolean expressions, 319
Boolean logic, 323
box selections

pasting content
between, 238–239

pasting single selection
into, 239–240

replacing text with, 237–238
zero-length box

selection, 240–241
braces, moving/selecting between

matching, 224–225
Break All Processes When One

Process Breaks, 374–376
breakpoints

adding labels to, 293–294
enabling/disabling all, 295–296
hidden Breakpoints tool

window, 86
Hit Count, 314–316
importing/exporting, 329
searching, 312–313
setting complex conditions

for, 321–323
setting filters for, 324–325
setting in Call Stack

window, 367–368
setting on functions, 316–317
setting simple conditions

of, 318–320
setting with code, 291–292
window, opening with

Ctrl+Alt+B, 293
buttons

Buttons area (customize dialog
box), 33–34

Code Snippets Manager, 264
Quick Find, 176
Replace in Files, 193–194

C
Call Hierarchy window, 310–312
call stacks, unwinding on unhandled

exceptions, 334
Call Stack window

setting breakpoints in, 367–368
setting tracepoints in, 369–371

characters, transposing, 219–220
Char variables (customizing search

results), 208
Choose Search Folders option (Find

What combo box), 189
Choose Settings To Export dialog

box, 7
circling arrows icon, 347
C# language

setting breakpoints in, 292
TODO comments in, 296

C++ language
setting breakpoints in, 292
TODO comments in, 296

Class Diagrams, 125
Classic view (Visual Studio 2010

Online Help), 5–6
Class View

“Class View and Object Browser
Icons”, 199

creating folders in, 350–352
searching in, 353–355
synchronizing, 355

Clear All command (Find
Symbol), 203

Clear All option (Find Results
window), 191

click and drag for docking/undock-
ing tool windows, 107–109

client projects, launching, 50
Clipboard Ring, cycling

through, 220–221
Close On Exit option (Initial

Directory), 140
closing current document

window, 158
closing tool windows, 87
code

adding visual guidelines
to, 394–396

CodeCompare extension
(VS), 402–404

Code Definition window, 301
Code view, 236

A
accelerators, keyboard. See key-

board accelerators
Actions area (Exception

Assistant), 333–334
Actions folder (VS Image

Library), 149
Active Files area (IDE

navigator), 161
active items, tracking in Solution

Explorer, 52–53
Active Tool Windows area (IDE

navigator), 161
Add Command dialog box, 34–35
Add New Item dialog box, 77
Add Or Remove Buttons

(toolbars), 27
aliases

command aliases, 113–115
Command Window

Aliases, 143–145
creating from commands, 118

All Components option (Look In
dialog), 197

AllMargins extension (VS), 411–413
All tab/Common tab in statement

completion, 226
ampersand (&) for accelerator

keys, 142
animations

Animations folder (VS Image
Library), 150

tool window, changing, 14–15
Annotations_Buttons folder (VS

Image Library), 150–151
application-level tracing, 336–339
arguments and switches

(commands), 115–119
asterisk (*)

to expand Toolbox, 87
for undoing Quick Replace, 179
for wildcard searches, 105

attributes, trace, 337–338
auto-hide all tool windows, 99–100
Auto Hide Channel, 100–101
Automatically Adjust Visual

Experience Based On Client
Performance check box, 13

auto-populating, stopping Toolbox
from, 136

428 code (continued)

custom file extension
associations, 168

custom item templates,
organizing, 68

custom project templates,
organizing, 71–74

cut/copy/paste collapsed code
with outlining, 247

cycling through open tool
windows, 86

DataPoints, importing/
exporting, 309

DataTips, editing values with, 308
DataTips, pinning to source

code, 305–306
DataTip values, viewing from last

debug session, 309
default item templates,

reorganizing, 74
default New Project location, 50
default project templates,

reorganizing, 77
default view in HTML editor,

changing, 236
Design and Source views in web

projects, 235
Design view, toggling, 236
development servers, using spe-

cific port for, 335
displaying HTML/CSS warnings as

errors, 268
docking floating tool windows to

previous location, 85
docking/undocking tool

windows, 107
Document Outline (web

projects), 251
documents on multiple

monitors, 155–156
editing read-only files, 282–283
Esc for returning to Editor return

to, 237
Exception Assistant, 331–333
Exceptions dialog box, 365
exporting environment settings, 6
exporting external tools list, 143
exporting window layouts, 134
Export Template Wizard, 64
external tools, running, 136–140
file open location, 165
Find Combo box keyboard

shortcuts, 182
Find in Files, 186, 190
Find in Files search results,

customizing, 206
finding keyboard shortcuts in

Visual Studio, 122
Find Symbol, 196–200

breakpoints, setting with
code, 291–292

breakpoints window,
opening, 293

browsers for web
development, 96

Call Hierarchy window, 310
Call Stack window, setting trace-

points in, 369
changing templates in New

Project/Items dialogs, 80
changing visual experience in

Visual Studio 2010, 12
changing Visual Studio color

schemes, 17
Class View, creating folders

in, 350
Class View, searching in, 353
Class View, synchronizing, 355
Clipboard Ring, cycling

through, 220–221
closing current document

window, 158
closing only specified files, 164
closing tool windows, 87
Code Definition window, 301
code snippets, creating new from

existing, 271–273
code snippets, inserting, 253
Code Snippets Manager, 261
code snippets, surrounding exist-

ing code with, 256
code snippets, using, 258
Collapse To Definitions with

outlining, 246
column ordering in tools

window, 304
command aliases, 113
command prompt history, 104
command prompt tab

completion, 105–107
commands, simple, 110–113
Commands tab, customizing

(toolbars), 30
commenting/uncommenting code

in web pages, 217–218
comments, adding to

DataTips, 307–308
Common tab/All tab in statement

completion, 226
conditional breakpoints,

setting, 318
conditional breakpoints, setting

complex, 321
creating Web Applications/Virtual

Directories in IIS, 46–47
CSS versions, choosing, 283
current line, cutting/deleting, 213

code (continued)
Code Window option (Editor

Context Menu), 32
collapsing with outlining, 242–243
commenting/uncommenting in

web pages, 217–218
creating Regular Expressions

within, 415–416
documenting with 3

keystrokes, 419–421
drag and drop into Toolbox, 229
Hide Selection, 244–246
inserting images into, 391–393
setting breakpoints with, 291–292
spell-checking, 407–408
Task Lists, creating code shortcuts

in, 300–301
viewing code blocks with vertical

lines, 409–411
code snippets

Code Snippets Manager, 261–263
HTML, 259–260
inserting, 253–256
JavaScript, 260–261
new, creating from

existing, 271–273
Snippet Designer, 418–419
surrounding existing code

with, 256–257
using, 258–259

codes, vstip
arguments and switches

(commands), 115
auto-hide all tool windows, 99
auto-populating, stopping

Toolbox from, 136
AutoRecover function, 10–13
Autos window, 379
blank lines, accidentally

copying, 211
blank lines, inserting above/below

current line, 218
box selections, pasting content

between, 238
box selections, zero-length, 240
Break All Processes When One

Process Breaks, 374
breakpoint filters, setting, 324
breakpoint Hit Count, 314–316
breakpoints, adding labels

to, 293–294
breakpoints, enabling/disabling

all, 295–296
breakpoints, importing/

exporting, 329
breakpoints, setting in Call Stack

window, 367
breakpoints, setting on

functions, 316

 code, writing 429

Task Lists, creating custom tokens
for, 297–300

temporary projects, creating, 56
testing commands, 119
text, replacing text with box

selection, 237
TODO comments in Task List, 296
Toolbars tab, customizing, 27
tabs in Toolbox, 93
Toolbox, drag and drop

into, 229–230
Toolbox, expanding/collapsing all

in, 87
tool window animations,

changing, 14
tracepoints, setting in source

code, 325
tracing, application/page

level, 336–339
tracking active items in Solution

Explorer, 52
tracking changes in

Editor, 280–281
transposing lines/words/

characters, 219–220
type-ahead selection support in

Solution Explorer, 52–53
Undo Quick Replace/Replace in

Files, 179
Undo/Redo global actions, 222
Undo/Redo stack, 221
using older frameworks with

multi-targeting, 46
using smart tags from

keyboards, 231–232
using statements, organizing

(C#), 232
visualizers (Watch windows), 345
Visual Studio logging, 37–38
Visual Studio Online Help, table of

contents in, 4
watches, adding from variable

windows, 348
Watch window, 340
white space, viewing, 241
window layouts, 90, 91
word completion, 229
word wrap, 248–249
WPF Tree Visualizer, 371–373
zoom in/out of text with

Editor, 209
code, writing

blank lines, avoiding
copying, 211–212

blank lines, inserting above/below
current line, 218

Clipboard Ring, cycling
through, 220–221

code snippets. See code snippets

Navigation Bar, using, 266
navigation stack, 275
Object Browser navigation/

references, 362
Object Browser overview, 356
Object Browser scope

settings, 359
opening file location from file

tab, 158
outlining, collapsing code

with, 242
parameter information, 227
Pascal case (Intellisense), 216
pasting single selection into box

selections, 239
pinning projects to Recent

Projects list, 56
Properties window, 249
Quick Find, 172
Quick Info option, 228
Quick Replace

(searching), 176–178
QuickWatch, 343–345
recent files, 154
Recent Project templates in New

Project dialog, 44
reference highlighting, 223
removing projects from Recent

Projects list, 9
repeating last search in

VS, 171–172
Replace in Files basic options, 192
ResetSettings switch, 39–41
resetting all keyboard

shortcuts, 131
running commands, 121
running multiple versions of Visual

Studio side-by-side, 3
Run To Cursor, 330
saving changes before

building, 302
searching breakpoints, 312–313
searching currently selected string

without Find window, 185
searching for project

templates, 43–45
searching in Toolbox, 88
selecting from current cursor to

last Go Back marker, 278
shortcuts, creating new, 127
showing hidden tool windows with

Auto Hide Channel, 100–101
show previous file versions, 166
Solution Folders, 54
tagged expressions (Replace in

Files), 203–206
Tag Specific options, 285
Task Lists, creating code shortcuts

in, 300

Find Symbol results shortcuts, 200
floating DataTips, 306–307
formatting documents/selections

for HTML, 265
formatting on HTML paste, 268
Go Back markers, navigating

with, 277
Go To Definition for CSS, 194
Guide Diamond, rearranging

windows in Visual Studio 2010
with, 83

Hide Selection, 244
HTML code snippets, 259
HTML Editor tag

navigation, 267–268
IDE navigator, 160
Image Library (Visual Studio), 147
importing/changing environment

settings, 14
incremental search, 184
inserting documents to right of

existing tabs, 153
inserting quotes when typing at-

tribute values, 264
Intellisense keywords, 215–216
Intellisense, making

transparent, 212
invoke statement completion, 225
item templates, creating, 57
JavaScript code snippets, 260
JScript Intellisense, updating, 269
JScript libraries, using in JScript

files, 270
keyboard accelerators for external

tools, 141
keyboard access to tool window

toolbar, 103
Keyboard Mapping Schemes, 125
Locals window, changing context

in, 376
logging commands, 132
macros, creating/using, 144–146
matching braces, selecting/mov-

ing between, 224
moving tool windows with

keyboard, 102
multiple start-up projects, 48–50
multiple views of same

document, 163
Navigate To dialog, 195
navigating among tabs in

Toolbox, 89
navigating errors in Errors

List, 303
navigating open document

windows, 157
navigating property tabs in proj-

ect properties, 55

430 code, writing (continued)

“Understanding Commands:
Running Commands”, 120

Command Window
aliases, exporting, 143–145
aliases, setting, 16
defined, 122

comments
adding to DataTips, 307–308
commenting/uncommenting code

in web pages, 217–218
Comment/Uncomment items

(Modify Selection), 35
Common Elements source files (VS

Image Library), 148–149
Common tab/All tab in statement

completion, 226
%comspec% variable, 138
conditional breakpoints, 318–320,

321–323
controls

Control box (Visual Studio
2010), 108

Controls area for modifying
menus/toolbars, 32–33

Controls dialog box (Commands
tab), 36

custom (Toolbox), 95
copying

blank lines accidentally, 211
Copy (Ctrl+C) command (Find

Symbol), 203
Copy Exception Detail To The

Clipboard link (Exception
Assistant), 333

cut/copy/paste collapsed code
with outlining, 247

“Create a Shortcut Key for a
Macro”, 146

CSS (Cascading Style Sheets)
Go To Definition for, 194
versions, choosing, 283–285
warnings, displaying as

errors, 268–269
current and previous statements

(Autos window), 379
Current Project action

Find What combo box, 189
Quick Find, 173

Custom Component Set
editing, 360–362
options (Look In dialog), 198

customizing
Commands tab, 30–37
custom controls (Toolbox), 95
custom file extension

associations, 168–169
custom item templates,

organizing, 68–71

replacing text with box
selection, 237–238

selecting from current cursor to
last Go Back marker, 278–279

smart tags, using from
keyboard, 231–232

statement completion,
invoking, 225–226

Tag Specific options. See Tag
Specific Options dialog box

text, zooming in/out in
Editor, 209–211

tracking changes in
Editor, 280–281

transposing lines/words/
characters, 219–220

Undo/Redo global actions, 222
Undo/Redo stack, using, 221–222
using statements,

organizing, 232–235
white space, viewing, 241–242
word completion, 229
word wrap, 248–249
zero-length box

selection, 240–241
collapsing code

collapse to definitions with
outlining, 246–247

cut/copy/paste with outlining, 247
with outlining, 242–243

colors
Color Theme Editor extension

(Visual Studio), 389–391
importing, 17–21

color schemes, changing
colors, importing, 21–24
obtaining fonts and colors, 17–21
resetting colors, 24

column ordering in tools
window, 304–305

combo box, Zoom, 210
command prompt

history, 104–105
tab completion, 105–107

commands
aliases, 113–115
arguments and switches, 115–119
Commands tab, customizing

(toolbars), 30–31
hidden Command tool

window, 86
logging, 132–134
running, 121–123
simple, 110–113
testing, 119–121
“Understanding Commands:

Aliases”, 119

code, writing (continued)
Collapse to Definitions with

outlining, 246–247
collapsing code with

outlining, 242–243
commenting/uncommenting in

web pages, 217–218
CSS versions, choosing, 283–285
current line, cutting/

deleting, 213–214
cut/copy/paste collapsed code

with outlining, 247
default view, changing in HTML

editor, 236–237
Design and Source views, switch-

ing between, 235
Design view, toggling, 236
Document Outline (web

projects), 251–253
documents/selections, formatting

for HTML, 265–266
drag and drop into

Toolbox, 229–230
editing read-only files, 282–283
Esc to return to Editor, 237
formatting HTML on paste, 268
Hide Selection, using, 244–246
HTML/CSS warnings, displaying as

errors, 268–269
HTML Editor tag

navigation, 267–268
inserting quotes when typing at-

tribute values, 264
JScript Intellisense, updating, 269
JScript libraries, 270–271
keywords (Intellisense), 215
matching braces, moving/select-

ing between, 224–225
moving between Common

tab/All tab in statement
completion, 226

navigating backwards/
forwards with Go Back
markers, 277–278

Navigation Bar, using, 266–267
navigation stack, 275–276
parameter information,

using, 227–228
Pascal case (Intellisense), 216
pasting contents between box

selections, 238–239
pasting single selections into box

selection, 239–240
Properties window keyboard

shortcuts, 249–250
Quick Info, using, 228–229
reference highlighting, 223–225

 Dynamic Tab Wells 431

design
Designer, viewing code

in, 124–125
Design Mode (window

layouts), 91
Design View

toggling, 236
window layouts, 90

detachable document windows, 155
development servers, using specific

port for, 335
development settings,

resetting, 25–28
devenv.com command, 76, 79
“Disable Mouse Wheel Zoom”

extension, 210
Display File Names Only (Find

Results window), 191
/doc or /d switch, 117
docking

Dock As Tabbed Document
option, 156

docking floating tool window to
previous location, 85

docking/undocking tool
windows, 107–110

Dock menu, 102
documents

closing current document
window, 158

closing only specified, 164–165
custom document extension

associations, 168–169
“Document Outline: Web

Project”, 267
document open location, 165–166
Document Outline (web

projects), 251–253
Document Tab Well user

interface, 417–418
Document This command, 419
editing read-only, 282–283
formatting for HTML, 265–266
IDE navigator, 160–162
inserting to right of existing

tabs, 153–154
multiple views of same

document, 163–164
navigating open document

windows, 157–158
on multiple monitors, 155–156
recent, 154–155
saving changes to open, 302
show previous versions, 166–167

drag and drop code into
Toolbox, 229–230

Dynamic Tab Wells, 417

development server, using specific
port for, 335

Exception Assistant, 331–333
Exceptions dialog box, 365–367
multicolumn sorting, 305
navigating errors in Errors

List, 303–304
Object Browser. See Object

Browser
QuickWatch, 343–345
refreshing data (Watch

window), 346–347
Run To Cursor, 330
saving changes before

building, 302–303
searching in Class View, 353–355
setting tracepoints in source

code, 325–328
Task Lists, creating code shortcuts

in, 300–301
Task Lists, creating custom tokens

for, 297–300
TODO comments in Task

List, 296–297
tracepoints, setting in Call Stack

window, 369–371
visualizers (Watch

windows), 345–346
watches, adding from variable

windows, 348–350
Watch window, 340–343
WPF Tree Visualizer, 371–373

dedicated style sheets (CSS), 283
default browsers, changing, 97
default development settings, 26
DefaultFileOpenLocation

(registry), 166
default item templates,

reorganizing, 74–78
default New Project location,

changing, 50–51
default project templates,

reorganizing, 77–80
default toolbars, 29
DefaultTracepointMessage string

value, 329
deleting

aliases (commands), 115
browsers, 98
current line, 213–214
custom toolbars, 29
folders in Class View, 352
projects from Recent Projects

list, 9
Solution Folders, 55
tabs (Toolbox), 95
unused using directives, 232–234

<deployment retail=true>
setting, 336

“Customize How Find In Files
Results Are Displayed in the
Find Results Window”, 191

Customize dialog box, 29
custom project templates,

organizing, 71–74
Document Tab Well user

interface, 417–418
Find in Files search

results, 206–208
GhostDoc extension (VS), 421
StructureAdornment extension

(VS), 410–411
StudioShell module, 423
Toolbars tab, 27–29
Visual Studio with Windows

PowerShell, 421–423
cutting

current line, 213–214
cut/copy/paste collapsed code

with outlining, 247
cycling through Clipboard

Ring, 220–221

D
data, refreshing (Watch

window), 346–347
DataTips

adding comments to, 307–308
creating floating, 306–307
editing values with, 308
importing/exporting, 309
pinning to source code, 305–306
values, viewing from last debug

session, 309
debugging

application-level/page-level
tracing, 336–339

Autos window, 379–382
Break All Processes When One

Process Breaks, 374–376
breakpoints. See breakpoints
Call Hierarchy window, 310–312
Call Stack window, setting break-

points in, 367–368
changing context in Locals

window, 376–379
Class View, creating folders

in, 350–352
Class View, synchronizing, 355
Code Definition window, 301
column ordering in tools

window, 304–305
Debug.AddWatch command, 349
Debug Location toolbar, 377
Debug Mode (window lay-

outs), 90, 92

432 editing

Find And Replace dialog box, 116
Find Combo box, 120, 122, 171,

182–184
Find/Command box, 182
Find In Files, 186–190, 190–191
Find In Files search results,

customizing, 206–208
finding keyboard shortcuts (Visual

Studio), 122–125
Find Next button (Quick

Find), 176
Find Next button (Quick

Replace), 178
Find Next button (Replace in

Files), 193
Find options (Find Symbol), 199
Find options (Replace in Files), 192
Find Result Format string

(registry), 207
Find Results windows, 190
Find What area (Quick

Replace), 177
Find What combo box, 187–190
Find What field, 197
Quick Find. See Quick Find

Find Symbol
basics, 196–200
results shortcuts, 200–203

floating DataTips, 306–307
floating tool window, docking to

previous location, 85
folders

creating in Class View, 350–352
Solution Folders, 54–55

fonts, importing, 17–21
Ford, Sara, 402
Foreground And Background

Colors In A Console Window
snippet, 263

formatting
documents/selections for

HTML, 265–266
HTML on paste, 268

forward slash (/) to collapse
Toolbox, 87

frameworks
Framework X/Silverlight X option

(Look In dialog), 198
older, using with

multi-targeting, 46
Friendly Name field (browsers), 97
Full Screen Mode (window

layouts), 93
Full Screen View (window

layouts), 90
functions, setting breakpoints

on, 316–317

“Side Effects and
Expressions”, 347

tagged (Replace in Files), 203–206
watch, 340–343

extensions
file, 168–169
Visual Studio. See Visual Studio

extensions
external tools

creating keyboard accelerators
for, 141–142

exporting list, 143–145
External Tools List setting, 16
running, 136–140
“Using External Tools”, 141

F
files

closing only specified, 164–165
current, syncing Solution Explorer

to, 396–397
custom file extension

associations, 168–169
Display File Names Only (Find

Results window), 191
editing read-only, 282–283
File menu, 154
filename argument

(logging), 133–134
file open location, 165–166
File variables (customizing search

results), 207
File View (window layouts), 90
Find In Files, 190–191
Go To File (Find/Command

box), 183
opening file menu drop-down list

from keyboard, 159
opening location from file

tab, 158
recent, 154–155
recovered. See AutoRecover

feature
Replace in Files, 180–182, 192–

194, 203–206
show previous versions, 166–167
Skip File button (Replace in

Files), 193
Visual Studio Image

Library, 147–148
filters, setting for

breakpoints, 324–325
finding. See also searching

“Find Command”
documentation, 116

“Find Keyboard Shortcuts”, 121
Find All option (Find Symbol), 199

E
editing

Custom Component Set, 360–362
Edit Custom Component Set dia-

log box, 198
Edit.Find command, 116–117
read-only files, 282–283
values with DataTips, 308

Editor
Editor Context Menu

(toolbars), 32
Editor Guideline extension

(VS), 394–396
running VIM commands

in, 406–407
tracking changes in, 280–281
using Emac commands

in, 400–401
using Esc to return to, 237
zoom in/out of text with, 209–211

Emacs Commands extension
(VS), 400–401

embedded styles (HTML), 284–285
Enable Rich Client Visual Experience

option, 13
environment settings

exporting, 6–9
importing/changing, 14–16

errors
displaying HTML/CSS warnings

as, 268–269
Error List tool window, 86
navigating in Errors List, 303–304

Esc for returning to Editor, 237
Exception Assistant, 331–333
Exceptions dialog box, 365–367
exporting

breakpoints, 329
Command Window

aliases, 143–145
DataPoints, 309
environment settings, 6–9
“Export Your Window Layouts”, 39
“Exporting Your Environment

Settings”, 27
Export Selected Environment

Settings, 134, 143
Export Template Wizard, 58–60,

64–67
external tools list, 143–145
Import and Export Settings

Wizard, 25
Window Layouts, 134–136

expressions
Expression Builder, 174, 204
Regular Expressions. See Regular

Expressions

 illustrations 433

Code Snippets, inserting, 253–255
Code Snippets Manager, 262–263
code snippets, surrounding exist-

ing code with, 256–257
color schemes, resetting, 24
column ordering in tools

window, 304–305
commands, running, 118–119
Commands tab, customizing

(toolbars), 30–37
Command Window, 113
commenting/uncommenting code

in web pages, 217–218
comments, adding to

DataTips, 307
conditional breakpoints,

setting, 318–320
conditional breakpoints, setting

complex, 321–323
custom file extension

associations, 168
custom item templates,

organizing, 68–70
custom project templates,

organizing, 71–72
DataTips, pinning to source

code, 305–306
DataTip values, viewing from last

debug session, 309
Debug Mode (windows

layouts), 92
default item templates,

reorganizing, 74–76
default project templates,

reorganizing, 78–80
default view in HTML editor,

changing, 236–237
Design and Source views in web

projects, 235–236
Design Mode, 91
development servers, using spe-

cific port for, 335
development settings,

resetting, 25–28
docking floating tool window to

previous location, 85
Document Outline (web

projects), 252–253
documents on multiple

monitors, 155–156
document window, closing

current, 158
editing read-only files, 282–283
Editor Guidelines extension

(VS), 394–395
Exception Assistant, 331–333
Exceptions dialog box, 365–366

#If DEBUG compiler option, 292
IIS (Internet Information

Services), 46–47
illustrations

4 modes of window layouts, 90
Add New Item dialog box, 77
AllMargins extension, 411–412
animating environment tools, 14
auto-hide all tool

windows, 99–100
AutoRecover, 10–11
Autos window, 379–381
blank lines, accidentally

copying, 211
blank lines, inserting above/below

current line, 218
box selections, pasting content

between, 238–239
box selections, pasting single se-

lection into, 239–240
box selections, replacing text

with, 238
box selections,

zero-length, 240–241
Break All Processes When One

Process Breaks, 374–375
breakpoint filters, setting, 324
breakpoint Hit Count, 314–315
breakpoints, adding labels to, 294
breakpoints, enabling/disabling

all, 295–296
breakpoints, importing/

exporting, 329
breakpoints, setting in Call Stack

window, 368
breakpoints, setting on

functions, 316–317
breakpoint windows,

opening, 293
browsers for web

development, 96–98
Call Hierarchy, 310–311
Call Stack window, setting trace-

points in, 369
Choose Settings To Export dialog

box, 7
Classic view (VS 2010 Online

Help), 5–6
Class View, creating folders

in, 350–352
Class View, searching in, 353–354
Class View, synchronizing, 355
Clipboard Ring, cycling

through, 220–221
CodeCompare extension (VS), 403
Code Definition Window, 301
code snippets, creating new from

existing, 272–273

G
GhostDoc tool (VS), 419–421
global actions, Undo/Redo, 222
Go Back markers, 277–278, 278–279
Gopp, Benjamin, 408
Go To Declaration (Ctrl+F12), 201
Go To Definition (F12), 200
Go To Definition for CSS, 194
Go To File (Find/Command

box), 183
Go To Line (Find/Command

box), 183
Go To Reference

(Shift+F12), 201–202
Granger, Chris, 407
Guide Diamond, 83–84
guidelines, adding to

code, 394–396

H
Harrington, Paul, 37, 394
Has Changed condition

(breakpoints), 319–320
Help Library Manager, 4
Help Online area (Exception

Assistant), 332–333
Hide External Items option

(Navigate To), 196
Hide Selection (code), 244–246
highlighting, reference, 223–225
history, command prompt, 104–105
Hit Count, breakpoint, 314–316
Horst, Bill, 334
“How to Customize What Files to

Search with Find In Files”, 189
HTML (Hypertext Markup

Language)
code snippets, 259–260
editor, changing default view

in, 236–237
embedded styles, 284–285
formatting documents/selections

for, 265–266
formatting on paste, 268
HTML Editor tag

navigation, 267–268
HTML Visualizers, 345
warnings, displaying as

errors, 268–269

I
Icon Image field (Export Template

Wizard), 61, 66
icons, refresh, 347–348
IDE navigator, 160–162

434 illustrations (continued)

Settings To Export dialog box, 7
shortcuts, creating new, 128–130
Show Previous Versions option

(documents), 166–167
simple commands, 110–113
smart tags, using from

keyboards, 231–232
Snippet Designer, 418
Solution Explorer Tools

extension, 397
StructureAdornment extension

(VS), 409
tabs in Toolbox, 93
tagged expressions (Replace in

Files), 203–206
Task Lists, creating code shortcuts

in, 300
Task Lists, creating custom tokens

for, 297–300
templates in New Project/Item

dialogs, changing, 81–82
testing commands, 120–121
TODO comments in Task

List, 296–297
Toolbars tab, customizing, 27–29
Toolbox, 87
Toolbox, drag and drop code

into, 229–230
tracepoints, setting in source

code, 325–328
tracing, application/page

level, 336–338
tracking active items in Solution

Explorer, 52
tracking changes in

Editor, 280–281
transposing lines/words/

characters, 219–220
type-ahead selection support in

Solution Explorer, 53
Undo Quick Replace/Replace in

Files, 179–182
Undo/Redo global actions, 222
Undo/Redo stack, 221–222
using statements,

organizing, 232–235
visualizers, 345–346
Visual Studio 2010, changing vi-

sual experience in, 12
Visual Studio 2010 Online Help,

table of contents in, 4–6
Visual Studio color schemes,

changing, 18–21
Visual Studio Image

Library, 147–152
Visual Studio logging, 37
watch expressions, 340
white space, viewing, 242

Local Internet Information Server
dialog, 46

Locals window, changing context
in, 376–378

logging commands, 133–134
macros, creating/using, 144–146
multiple Startup Projects, 48–49
multiple versions of Visual Studio,

running side-by-side, 3
multiple views of same

document, 163–164
navigating errors in Errors

List, 304
navigating open document

windows, 157–158
Navigation Bar, using, 266–267
navigation stack, 275–276
New Item dialog box, 74
New Project dialog box, 44–46,

72
New Project locations, changing

default, 51
Object Browser navigation/

references, 362–364
Object Browser

overview, 357–358
Object Browser scope

settings, 359–362
outlining, collapsing code

with, 242–243
parameter information, 227
Pascal case (Intellisense), 216
Quick Find, 172–176
Quick Replace, 176–178
Quickwatch, 343–345
quotes, inserting when typing at-

tribute values, 264
Recent Projects list, 56
Recent Projects list, removing

projects from, 9
reference highlighting, 223–224
Regex Editor, 415
repeating last search in

VS, 171–172
Replace in Files basic

options, 192–194
/ResetSettings switch, 39–40
Run To Cursor, 330
safe mode (Visual Studio), 38
saving changes before

building, 302–303
searching breakpoints, 312–313
searching currently selected string

without Find window, 185
searching in Toolbox, 88
selecting from current cursor to

last Go Back marker, 278–279
selecting/moving between match-

ing braces, 224–225

illustrations (continued)
exporting Command Window

Aliases/External Tools
List, 143–145

exporting environment
settings, 6–8

Export Template Wizard, 58,
65–67

external tools, running, 136–140
file menu drop-down list, opening

from keyboard, 159
file open location, 165–166
files, closing only

specified, 164–165
files, recent, 154–155
Find And Replace dialog box, 116
Find in Files, 186–190
Find in Files search results,

customizing, 206–208
finding keyboard

shortcuts, 122–125
Find Symbol, 197
Find Symbols results

shortcuts, 200–202
floating DataTips, 306–307
Guide Diamond, 84
Help Library Manager, 4–6
Hide Selection, 244–245
HTML code snippets, 259–260
HTML/CSS warnings, displaying as

errors, 268
HTML Editor tag

navigation, 267–268
IDE navigator, 160–162
Image Insertion tool (Visual

Studio), 392–393
Import And Export Settings

Wizard, 6–7
importing/changing environment

settings, 14–16
importing colors, 21–24
incremental search, 184–185
inserting documents to right of

existing tabs, 153–154
Intellisense keywords, 215–216
Intellisense, making

transparent, 212
invoke statement completion, 226
item templates, 63
JavaScript code snippets, 260–261
JScript Intellisense, updating, 269
JScript libraries, 270–271
keyboard accelerators for external

tools, 141–142
Keyboard Mapping

Schemes, 125–127
keyboard shortcuts,

resetting, 131–133

 keyboard shortcuts 435

code snippets, using, 258
Collapse To Definitions with

outlining, 246
command aliases, 113
command prompt history, 104
commands, running, 121
Commands tab, customizing

(toolbars), 30
Common tab/All tab in statement

completion, 226
CSS versions, choosing, 283
current document window,

closing, 158
current line, cutting/deleting, 213
DataPoints, importing/

exporting, 309
default view in HTML editor,

changing, 236
Design and Source views in web

projects, 235
Design view, toggling, 236
development settings,

resetting, 25
docking floating tool windows to

previous location, 85
docking/undocking tool

windows, 107
Dock menu, 102
Document Outline (web

projects), 251
documents on multiple

monitors, 155–156
Esc for returning to Editor return

to, 237
Exceptions dialog box, 365
exporting environment settings, 6
exporting external tools list, 143
exporting window layouts, 134
Export Template Wizard, 64
external tools, running, 136–140
file extension associations,

custom, 168
files, closing only specified, 164
files, recent, 154
“Find Keyboard Shortcuts”, 121
Find Combo box, 182–184
Find In Files, 186, 190
Find In Files search results,

customizing, 206
finding (Visual Studio), 122–125
Find Symbol, 196–200
Find Symbol results shortcuts, 200
Go Back markers, navigating

with, 277
Go To Definition for CSS, 194
Guide Diamond, rearranging

windows in Visual Studio 2010
with, 83

Hide Selection, 244

item templates
creating, 57–64
custom, organizing, 68–71
default, reorganizing, 74–78
in Items dialog, changing, 80–82

j
JavaScript code snippets, 260–261
Johnson, Matthew, 389
JScript

Intellisense, updating, 269
libraries, using in JScript

files, 270–271

K
Keep Modified Files Open After

Replace All option, 181, 191,
193

keyboard accelerators, 141–142
keyboard shortcuts

Additional Keyboard Mapping
Schemes, 125–127

arguments and switches
(commands), 115

auto-populating, stopping
Toolbox from, 136

AutoRecover function, 10–13
Autos window, 379
blank lines, accidentally

copying, 211
blank lines, inserting above/below

current line, 218
box selections, pasting content

between, 238
box selections, zero-length, 240
breakpoints, adding labels

to, 293–294
breakpoints, enabling/disabling

all, 295–296
breakpoints, setting in Call Stack

window, 367
breakpoints, setting on

functions, 316
breakpoints window,

opening, 293
Call Hierarchy window, 310
changing visual experience in

Visual Studio 2010, 12
Class View, searching in, 353
Clipboard Ring, cycling

through, 220–221
Code Definition window, 301
code snippets, inserting, 253
Code Snippets Manager, 261
code snippets, surrounding exist-

ing code with, 256

word completion, 229
word wrap, 248–249
WPF Tree Visualizer, 371–373
zoom in/out of text with

editor, 210–211
images. See also Images Library

(Visual Studio)
Image Insertion tool, 391–393

Immediate Window, 122
importing

breakpoints, 329
colors, 17–21, 21–24
DataPoints, 309
fonts, 17–21
Import and Export settings, 16
Import and Export Settings

Wizard, 6, 14, 25
importing or changing environ-

ment settings, 14–16, 135
Import Selected Environment

Settings option, 22
includes operations, 195
Include Sub-Folders option (Find

What combo box), 189
incremental search, 184–185
Initial Directory, 139
Insert Documents To The Right Of

Existing Tabs option, 153
installing

CodeCompare extension (VS), 403
Editor Guidelines extension

(VS), 394
“Installing Visual Studio Versions

Side-by-Side”, 3
Visual Studio extensions, 385–387
Win7 Taskbar Extension, 413

Intellisense
JScript Intellisense, updating, 269
keywords, 215–216
making transparent, 212
Pascal case and, 216
Use IntelliSense To Verify The

Function Name, 317
XAML Intellisense Presenter

extension, 395–396
invoke statement

completion, 225–226
Is True condition

(breakpoints), 319–320
items

active, tracking in Solution
Explorer, 52–53

adding to custom tabs
(Toolbox), 94–95

New Items dialog, changing tem-
plates in, 80–82

436 keyboard shortcuts (continued)

Undo/Redo global actions, 222
Undo/Redo stack, 221
for using smart tags, 231–232
using statements, organizing

(C#), 232
Visual Basic 6. See Visual Basic 6

keyboard shortcuts
visualizers (Watch windows), 345
Visual Studio 6. See Visual Studio

6 keyboard shortcuts
Visual Studio 2010 Online Help,

table of contents in, 4
Visual Studio color schemes,

changing, 17
Watch window, 340
Web Applications/Virtual

DIrectories, creating in
IIS, 46–47

white space, viewing, 241
word completion, 229
word wrap, 248–249
for zooming, 211
zoom in/out of text with

editor, 209
keywords, Intellisense, 215–216
Kurata, Deborah, 164

l
labels, adding to

breakpoints, 293–294
layouts, window. See Window

Layouts
Lightweight view (VS 2010 Online

Help), 5
lines

blank, accidentally copying, 211
blank, inserting above/below cur-

rent line, 218
cutting/deleting current, 213–214
transposing, 219–220

lists, opening from keyboard, 159
loading Visual Studio, 37–38
Locals window, 348, 376–379
Location variables (customizing

search results), 207
logging (Visual Studio), 37–38,

132–134
Look at These File Types option

(Find What combo box), 189
Look In area (Quick Find), 173–174
Look In dialog (Find

Symbol), 197–199
Look in drop-down list (Find What

combo box), 189

posters, 425
Properties window, 249–250
Quick Find, 172
Quick Info option, 228
Quick Replace

(searching), 176–178
QuickWatch, 343–345
read-only files, editing, 282
Recent Projects list, removing

projects from, 9
Recent Project templates in New

Project dialog, 44
reference highlighting, 223
repeating last search in

VS, 171–172
Replace in Files basic options, 192
Run To Cursor, 330
saving changes before

building, 302
searching currently selected string

without Find window, 185
searching for project

templates, 43–45
selecting from current cursor to

last Go Back marker, 278
shortcuts, creating new, 127,

127–131
shortcuts, resetting all, 131–133
smart tags, using from

keyboards, 231–232
Solution Folders, 54
System menu, 102
tagged expressions (Replace in

Files), 203–206
Tag Specific options, 285
Task Lists, creating code shortcuts

in, 300
Task Lists, creating custom tokens

for, 297–300
temporary projects, creating, 56
testing commands, 119
text, replacing with box

selection, 237
Toolbars tab, customizing, 27
tool window animations,

changing, 14
tool window toolbar, access

to, 103
tracking active items in Solution

Explorer, 52
tracking changes in

Editor, 280–281
transposing lines/words/

characters, 219–220
type-ahead selection support in

Solution Explorer, 52–53
Undo Quick Replace/Replace in

Files, 179

keyboard shortcuts (continued)
HTML code snippets, 259
HTML/CSS warnings, displaying as

errors, 268
HTML, formatting documents/

selections for, 265
importing/changing environment

settings, 14
incremental search, 184
inserting documents to right of

existing tabs, 153
inserting quotes when typing at-

tribute values, 264
Intellisense keywords, 215–216
Intellisense, making

transparent, 212
invoke statement completion, 225
item templates, creating, 57
JavaScript code snippets, 260
JScript Intellisense, updating, 269
keyboard accelerators for external

tools, 141
Keyboard Mapping Schemes, 125
“Keyboard Shortcuts: Creating

New Shortcuts”, 112
“Keyboard Shortcuts Reset All

Your Shortcuts”, 131
Locals window, changing context

in, 376
macros, creating/using, 144–146
matching braces, selecting/mov-

ing between, 224
moving tool windows

with, 102–103
multiple start-up projects, 48–50
multiple views of same

document, 163
multi-targeting, using older

frameworks with, 46
Navigate To dialog, 195
navigating errors in Errors

List, 303
navigating property tabs, 55
Navigation Bar, using, 266
navigation stack, 275
New Project location, changing

default, 50
Object Browser navigation/

references, 362
Object Browser overview, 356
Object Browser scope

settings, 359
outlining, collapsing code

with, 242
parameter information, 227
Pascal case (Intellisense), 216
pasting single selection into box

selections, 239

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 menu/command references 437

file location, opening from file
tab, 158

file open location, 165
files, closing only specified, 164
Find Combo box keyboard

shortcuts, 182
Find In Files, 186, 190
Find In Files search results,

customizing, 206
finding keyboard shortcuts in

Visual Studio, 122
Find Symbol, 196–200
Find Symbol results shortcuts, 200
formatting on HTML paste, 268
Go Back markers, navigating

with, 277
Go To Definition for CSS, 194
Guide Diamond, rearranging win-

dows in, 83
Hide Selection, 244
HTML code snippets, 259
HTML/CSS warnings, displaying as

errors, 268
HTML, formatting documents/

selections for, 265
IDE navigator, 160
importing/changing environment

settings, 14
incremental search, 184
inserting documents to right of

existing tabs, 153
inserting quotes when typing at-

tribute values, 264
Intellisense keywords, 215–216
invoke statement completion, 225
item templates, creating, 57
JavaScript code snippets, 260
JScript Intellisense, updating, 269
keyboard accelerators for external

tools, 141
Keyboard Mapping Schemes, 125
keyboard shortcuts, resetting

all, 131
Locals window, changing context

in, 376
logging commands, 132
macros, creating/using, 144–146
matching braces, selecting/mov-

ing between, 224
moving tool windows with

keyboard, 102
multiple start-up projects, 48–50
multiple views of same

document, 163
multi-targeting, using older

frameworks with, 46
Navigate To dialog, 195
navigating errors in Errors

List, 303

Code Definition window, 301
code snippets, inserting, 253
Code Snippets Manager, 261
code snippets, surrounding exist-

ing code with, 256
code snippets, using, 258
Collapse To Definitions with

outlining, 246
command aliases, 113
commands, running, 121
Commands tab, customizing

(toolbars), 30
commenting/uncommenting code

in web pages, 217–218
Common tab/All tab in statement

completion, 226
conditional breakpoints,

setting, 318
conditional breakpoints, setting

complex, 321
CSS versions, choosing, 283
current line, cutting/deleting, 213
cycling through open tool

windows, 86
DataPoints, importing/

exporting, 309
DataTips, pinning to source

code, 305–306
default New Project location,

changing, 50
default view in HTML editor,

changing, 236
Design and Source views in web

projects, 235
Design view, toggling, 236
development settings,

resetting, 25
docking floating tool windows to

previous location, 85
docking/undocking tool

windows, 107
Document Outline (web

projects), 251
documents on multiple

monitors, 155–156
document windows, closing

current, 158
Editor, tracking changes

in, 280–281
Esc for returning to Editor, 237
Exceptions dialog box, 365
exporting environment settings, 6
exporting external tools list, 143
exporting window layouts, 134
Export Template Wizard, 64
external tools, running, 136–140
file extension associations,

custom, 168

m
Macro Explorer, 146
macros, creating/using, 144–146
Manela, Matt, 418
Mapping Schemes,

Keyboard, 125–127
/markall or /m switch, 117
Match Case option

Find Symbol, 199
Find What combo box, 187
Quick Find, 174

matching braces, moving/selecting
between, 224–225

Match option (Find Symbol), 199
Match Whole Word option

Find What combo box, 187
Quick Find, 174

Members list, 266–267
menu/command references

arguments and switches
(commands), 115

auto-hide all tool windows, 99
auto-populating, stopping

Toolbox from, 136
AutoRecover function, 10–13
Autos window, 379
blank lines, accidentally

copying, 211
blank lines, inserting above/below

current line, 218
box selections, pasting content

between, 238
box selections, zero-length, 240
Break All Processes When One

Process Breaks, 374
breakpoint filters, setting, 324
breakpoint Hit Count, 314–316
breakpoints, adding labels

to, 293–294
breakpoints, enabling/disabling

all, 295–296
breakpoints, importing/

exporting, 329
breakpoints, setting in Call Stack

window, 367
breakpoints, setting on

functions, 316
breakpoints window,

opening, 293
browsers for web

development, 96
Call Hierarchy window, 310
Class View, creating folders

in, 350
Class View, searching in, 353
Class View, synchronizing, 355
Clipboard Ring, cycling

through, 220–221

438 menu/command references (continued)

multiple Startup Projects, 48–50
multiple versions of VS, running

side-by-side, 3
multiple views of same

document, 163–164
multi-targeting, using older frame-

works with, 46
My Solution option (Look In

dialog), 198

n
namespaces, System, 234
naming

custom toolbars, 29
tabs (Toolbox), 95

navigating
backwards/forwards with Go Back

markers, 277–278
errors in Errors List, 303–304
Find Results list, 190
HTML Editor tag

navigation, 267–268
IDE navigator, 160–162
Navigate To dialog, 195–196
Navigation Bar, using, 266–267
navigation stack, 275–276
Object Browser

navigation, 362–364
open document

windows, 157–158
property tabs in project

properties, 55
reference highlighting and, 223
among tabs in Toolbox, 89

.NET Framework, older versions
of, 46

“A New Standard For Packaging
Your Data”, 388

New Item dialog box, 74–75, 80–82
New Project location, changing

default of, 50–51
New Projects dialog, 43–45, 56, 72,

80–82
n minutes/n days options

(AutoRecover), 10

O
Object Browser

Browse Definition
command, 202–203

navigation and
references, 362–364

“The Object Browser: Browsing
Scope”, 198

overview, 356–357
setting browsing scope, 359–362

Toolbars tab, customizing, 27
tabs in Toolbox, 93
tool window animations,

changing, 14
tool windows, closing, 87
tracepoints, setting in source

code, 325
transposing lines/words/

characters, 219–220
type-ahead selection support in

Solution Explorer, 52–53
Undo Quick Replace/Replace in

Files, 179
Undo/Redo global actions, 222
Undo/Redo stack, 221
using statements, organizing

(C#), 232
visualizers (Watch windows), 345
Visual Studio 2010, changing vi-

sual experience in, 12
Visual Studio 2010 Online Help,

table of contents in, 4
Visual Studio color schemes,

changing, 17
Visual Studio, repeating last search

in, 171–172
watches, adding from variable

windows, 348
Watch window, 340
white space, viewing, 241
word completion, 229
word wrap, 248–249
zoom in/out of text with

editor, 209
menus, rearranging, 32
Microsoft namespace, 234
Microsoft WindowsClient.NET

site, 13
minus sign (-) to collapse area of

code, 243–244
Misc category (Properties

window), 250
Modify Selection area (customize

dialog box), 34–37
Modify Selection option

(toolbars), 29
monitors, multiple documents

on, 155–156
mouse wheel, zooming in/out of

text with, 209–210
moving

between Common tab and All tab
in statement completion, 226

and selecting between matching
braces, 224–225

multicolumn sorting, 305
multiple monitors, documents

on, 155–156

menu/command references
(continued)

navigating open document
windows, 157

Navigation Bar, using, 266
navigation stack, 275
Object Browser navigation/

references, 362
Object Browser overview, 356
Object Browser scope

settings, 359
outlining, collapsing code

with, 242
parameter information, 227
Pascal case (Intellisense), 216
pasting single selection into box

selections, 239
Properties window, 249
Quick Find, 172
Quick Info option, 228
Quick Replace

(searching), 176–178
QuickWatch, 343–345
read-only files, editing, 282
recent files, 154
Recent Projects list, removing

projects from, 9
Recent Project templates in New

Project dialog, 44
reference highlighting, 223
Replace in Files basic options, 192
Run To Cursor, 330
saving changes before

building, 302
searching currently selected string

without Find window, 185
searching for project

templates, 43–45
searching in Toolbox, 88
selecting from current cursor to

last Go Back marker, 278
shortcuts, creating new, 127
smart tags, using from

keyboards, 231–232
Solution Explorer, tracking active

items in, 52
Solution Folders, 54
tagged expressions (Replace in

Files), 203–206
Tag Specific options, 285
Task Lists, creating code shortcuts

in, 300
Task Lists, creating custom tokens

for, 297–300
temporary projects, creating, 56
testing commands, 119
text, replacing text with box

selection, 237

 Replace With area (Quick Replace) 439

Find Options area, 174–176
Find What field, 173
Look In area, 173–174
overview, 172–173

Quick Info option, 228–229
Quick Replace, 176–178, 179–180
QuickWatch

fundamentals of, 343–345
setting watch expressions

with, 341
window, 348

quotes, inserting when typing at-
tribute values, 264

R
read-only files, editing, 282–283
rearranging menus/toolbars, 32
recent files, 154–155
Recent Projects list

pinning projects to, 56
removing projects from, 9

Recent Project templates in New
Project dialog, 44

recovered files. See AutoRecover
feature

Redo/Undo global actions, 222
Redo/Undo stack, 221–222
reference highlighting, 223–225
references, Object

Browser, 362–364
refreshing data (Watch

window), 346–347
Regex Editor extension

(VS), 415–416
registry, editing, 207, 329, 395, 410
Regular Expressions

creating within code, 415–416
Find What combo box

and, 188–189
Quick Find and, 175

Remote Desktop, improving perfor-
mance over, 13

renaming code snippets, 230
repeating last search in VS, 171–172
Replace All buttons (Quick

Replace), 178
Replace buttons (Replace in

Files), 193–194
Replace in Files operation

basic options, 192–194
tagged expressions, 203–206
undoing, 180–182

Replace With area (Quick
Replace), 177

pinning
DataTips to source code, 305–306
projects to Recent Projects list, 56
tabs, 417

posters of keyboard shortcuts, 425
Power Commands extension

(VS), 398–400
PowerConsole extension

(VS), 404–405
PowerShell (Windows), 421–423
Prefix option (Find Symbol), 199
Presentation Zoom extension

(VS), 211, 408–409
Preview Image field (Export

Template Wizard), 61, 66
Process combo box (Locals

window), 377
Productivity Power Tools

(VS), 416–418
projects

creating temporary, 56–57
default templates,

reorganizing, 77–80
multiple startup, 48–50
navigating property tabs in proj-

ect properties, 55
New Project location, changing

default of, 50–51
pinning projects to Recent

Projects list, 56
removing from Recent Projects

list, 9
project templates

creating with Export Template
Wizard, 64–67

custom, organizing, 71–74
in New Project dialog,

changing, 80–82
Recent Project templates in New

Project dialog, 44
searching for, 43–45

properties
project, navigating property tabs

in, 55
Properties window keyboard

shortcuts, 249–250
Pugh, David, 409, 411

Q
question mark (?) for wildcard

searches, 105
Quick Find

buttons, 176
dialog box, 117–118
Find Next button, 176

using for web
development, 96–98

Object images (VS Image
Library), 151

/on /off argument (logging), 133
Online Help, table of contents in

(Visual Studio 2010), 4–6
Open Data Protocol Visualizer ex-

tension (VS), 405–406
opening

file location from file tab, 158
file menu drop-down list from

keyboard, 159
Open File Using Directory Of

Currently Active Document
option, 166

Open Packaging Convention, 388
“Optimizing Visual Studio 2010 and

WPF Applications for Remote
Desktop”, 13

ordering, column (tool
windows), 304–305

Organize Usings menu (editor), 232
outlining

Collapse to Definitions
with, 246–247

collapsing code with, 242–243
cut/copy/paste collapsed code

with, 247
output files (Visual Studio Image

Library), 147
Output Location (Export Template

Wizard), 61, 66
Output window option (Initial

Directory), 140
OverviewMargin extension

(VS), 411–413
/overwrite argument (logging), 133

P
page-level tracing, 336–339
Papadimoulis, Alex, 402
parameter information, 227–228
Parsons, Jared, 406–407
Pascal Case, 196, 216
pasting

content between box
selections, 238–239

cut/copy/paste collapsed code
with outlining, 247

formatting on HTML paste, 268
single selection into box

selection, 239–240
performance, improving by chang-

ing visual experience (VS
2010), 12–13

440 Replace With field (Replace in Files)

Solution Explorer
Properties button, 48
Solution Explorer Tools extension

(VS), 396–397
tracking active items in, 52–53
type-ahead selection support

in, 52–53
Solution Folders, 54–55
sorting

multicolumn sorting, 305
using statements, 234–235

Source and Design views in web
projects, 235–236

source files (Visual Studio Image
Library), 147

Spell Checker extension
(VS), 407–408

Split view, 235
stack frame (Locals window), 377
Startup Projects, multiple, 48–50
statement completion

invoking, 225–226
moving between Common tab/All

tab in, 226
statements, using, 232–235
Status Bar, 89
StructureAdornment extension

(VS), 409–411
StudioShell extension (VS), 421–423
styles, embedded (HTML), 284–285
style sheets, dedicated (CSS), 283
Substring option (Find Symbol), 199
switches and arguments

(commands), 115–119
symbols

Find Symbols results
shortcuts, 200–203

searching for, 196–200
synchronizing Class View, 355
syntax for logging, 132
System menu, 102
System namespaces, 234

T
table of contents in Visual Studio

2010 Online Help, 4–6
tabs

command prompt tab
completion, 105–107

inserting documents to right of
existing, 153–154

moving between Common tab
and All tab in statement
completion, 226

navigating in Toolbox, 89
opening file location from file

tab, 158

search results, customizing (Find
In Files), 206–208

Search Results (Find
Symbol), 199–200

Search Up option (Quick
Find), 174

simple searches for files, 105–106
in Toolbox, 88
Undo Quick Replace and Replace

in Files, 179–182
wildcard searches, 105–106

selecting
from current cursor to last Go

Back marker, 278–279
formatting for HTML

selections, 265–266
Hide Selection, 244–246
and moving between matching

braces, 224–225
Selection Comment/Selection

Uncomment:, 35
Server projects, launching, 50
settings

default development, 26
development, resetting, 25–28
environment, exporting, 6–9
environment, importing/

changing, 14–16
Set a Breakpoint (Find/Command

box), 183
“Setting a Breakpoint in the Call

Stack Window”, 369
“Setting a Tracepoint in Source

Code”, 369
Settings To Export dialog box, 7

sharing tokens, 299–300
Shifflett, Karl, 395
shortcuts

creating new, 127–131
keyboard. See keyboard shortcuts
for running commands, 121–122

Show Commands Containing
area, 111

Show Previous Versions option
(documents), 166–167

“Side Effects and Expressions”, 347
Sitnikov, Dmitry, 413
Skip File button (Replace in

Files), 193
smart tags, using from

keyboard, 231–232
snippets, code

inserting, 253–256
Snippet Designer extension

(VS), 418–419
surrounding existing code

with, 256–257
using, 258–259

Replace With field (Replace in
Files), 192–193

resetting
color schemes, 24
development settings, 25–28
all keyboard shortcuts, 131–133
Reset All option (Modify

Selection), 34
Reset button (tools), 130
ResetSettings switch (Visual

Studio), 39–41
Result options

Find in Files, 190–191
Replace in Files, 193

results shortcuts (Find
Symbol), 200–203

Richards, Noah, 414
Run command (Find/Command

box), 182
running commands, 121–123
Run To Cursor, 330

S
safe mode (Visual Studio), 38
saving

changes before building, 302–303
color schemes, 23
current settings, 25
images in .resx files, 393
Save AutoRecover Information

Every check box, 10
Script Editor, 168
ScriptFree view (VS 2010 Online

Help), 5
Scrollable Tab Wells, 417
searching. See also finding

breakpoints, 312–313
in Class View, 353–355
currently selected string without

Find window, 185–186
Find Combo box keyboard

shortcuts, 182–184
Find in Files, 186–190, 190–191
Find Symbol, 196–200
Find Symbol results

shortcuts, 200–203
for project templates in New

Project dialog, 43–45
Go To Definition for CSS, 194
incremental search, 184–185
Navigate To dialog, 195–196
Quick Find. See Quick Find
Quick Replace, 176–178
repeating last search, 171–172
Replace in Files, 180–182, 192–

194, 203–206

 views 441

changes in Editor, 280–281
transposing lines/words/

characters, 219–220
“Trees in WPF”, 371
Triple Click extension (VS), 414–415
Troubleshooting Tips area

(Exception Assistant), 332
two threads icon, 347
type-ahead functionality, 159
type-ahead selection support in

Solution Explorer, 52–53

u
uncommenting/commenting code

in web pages, 217–218
“Understanding Commands:

Running Commands”, 120
“Understanding Commands:

Aliases”, 119
undocking single tool

windows, 107–108
Undo Quick Replace/Replace in

Files, 179–182
Undo/Redo global actions, 222
Undo/Redo stack, 221–222
unhandled exceptions, unwinding

call stacks on, 334
Unicode, 140
universal zoom, 211
UnresolvedMergeConflict

token, 298
updating JScript Intellisense, 269
Use Defaults option (color

schemes), 24
Use Hardware Graphics Acceleration

If Available option, 13
Use option

Find What combo box, 187
Quick Find, 174–175

“Using External Tools”, 141
using statements (C#), 232–235

V
variables

for customizing search
results, 207–208

Variable windows, adding watches
from, 348–350

Vertical Tab Well, 417
views

Classic (Visual Studio 2010 Online
Help), 5–6

multiple views of same
document, 163–164

“View Code Blocks Using Vertical
Lines”, 411

Text variables (customizing search
results), 207

Text Visualizers, 345
zoom in/out with Editor, 209–211

“The Daily WTF” extension
(VS), 401–402

themes, creating with VS Color
Theme Editor, 389–391

Thread combo (Locals window), 377
Threads window, 325
Title Bar, 85
TODO comments in Task

List, 296–297
toggling Design view, 236
tokens, creating custom for Task

Lists, 297–300
toolbars, customizing

Commands tab, 30–37
Toolbars tab, 27–29

Toolbox
context menu, 136
drag and drop code into, 229–230
expanding/collapsing all in, 87
navigating among tabs in, 89
searching in, 88
stopping from

auto-populating, 136
tabs in, 93–95

tools
exporting external tools

list, 143–145
running external, 136–140

tools window
animations, changing, 14–15
auto-hide all, 99–100
closing, 87
column ordering in, 304
docking floating to previous

location, 85
docking/undocking, 107–110
keyboard access to toolbar, 103
moving with keyboard, 102–103
open, cycling through, 86
showing hidden with Auto Hide

Channel, 100–101
To, Quan, 388
tracepoints

setting in Call
Stackwindow, 369–371

setting in source code, 325–328
tracing

application-level/
page-level, 336–339

“Tracing and Implementing
Applications”, 325

tracking
active items in Solution

Explorer, 52–53

organizing in Toolbox, 231
pinning, 417
in Toolbox, 93–95

tagged expressions (Replace in
Files), 203–206

tags
HTML Editor tag

navigation, 267–268
Tag Specific options. See Tag

Specific Options dialog box
using smart tags from

keyboards, 231–232
Tag Specific Options dialog box

ASP.NET Controls, 286
Bold setting, 289
Client HTML Tags, 286–287
closing tag option, 287–288
Default Settings, 286
Delete option, 286
Enable Outlining for Tag, 288
Indent Contents, 287
Line Breaks, 287
Minimum lines setting, 288
New Folder option, 286
New Tag option, 286
Outlining in Code Editor, 288
overview, 285–286
Per Tag Colorization, 289
Per Tag Formatting, 286
Preview option, 287
Tag Background/Foreground

settings, 289
Tree view, 286

Task Lists
creating code shortcuts

in, 300–301
creating custom tokens

for, 297–300
TODO comments in, 296–297

templates
custom item, organizing, 68–71
default item, reorganizing, 74–78
default project,

reorganizing, 77–80
item, creating, 57–64
in NewProject/Items dialogs,

changing, 80–82
project, creating with Export

Template Wizard, 64–67
project, organizing custom, 71–74
project, searching for, 43–45
Recent Project in New Project

dialog, 44
temporary projects, creating, 56–57
testing commands, 119–121
text

replacing with box
selection, 237–238

442 views (continued)

rearranging windows in Visual
Studio 2010 with Guide
Diamond, 83

Run To Cursor, 330
Task Lists, creating code shortcuts

in, 300
type-ahead selection support in

Solution Explorer, 52–53
Undo/Redo stack, 221
visualizers (Watch windows), 345
white space, viewing, 241

Visual C++ 6 keyboard shortcuts
breakpoints, adding labels

to, 293–294
breakpoints window,

opening, 293
Clipboard Ring, cycling

through, 220–221
Code Definition window, 301
commands, running, 121
current line, cutting/deleting, 213
Design view, toggling, 236
Document Outline (web

projects), 251
Esc for returning to Editor return

to, 237
Find Combo box keyboard

shortcuts, 182
Find Symbol, 196–200
Find Symbol results shortcuts, 200
HTML, formatting documents/

selections for, 265
Intellisense keywords, 215–216
invoke statement completion, 225
Locals window, changing context

in, 376
multiple start-up projects, 48–50
navigating errors in Errors

List, 303
Navigation Bar, using, 266
navigation stack, 275
Pascal case, 216
Properties window, 249
text, replacing with box

selection, 237
white space, viewing, 241

Visual C# 2005 keyboard shortcuts
arguments and switches

(commands), 115
Autos window, 379
breakpoints, setting on

functions, 316
breakpoints window,

opening, 293
Code Definition window, 301
code snippets, inserting, 253
code snippets, surrounding exist-

ing code with, 256

breakpoints window,
opening, 293

Call Hierarchy window, 310
Class View, searching in, 353
code snippets, inserting, 253
Code Snippets Manager, 261
code snippets, surrounding exist-

ing code with, 256
code snippets, using, 258
Collapse To Definitions with

outlining, 246
commands, running, 121
commenting/uncommenting code

in web pages, 217–218
current line, cutting/deleting, 213
cycling through open tool

windows, 86
Design view, toggling, 236
docking floating tool windows to

previous location, 85
docking/undocking tool

windows, 107
Document Outline (web

projects), 251
Find Combo box keyboard

shortcuts, 182
Find In Files (Result options), 190
Find Symbol, 196–200
Find Symbol results shortcuts, 200
Go To Definition for CSS, 194
Hide Selection, 244
HTML code snippets, 259
HTML, formatting documents/

selections for, 265
IDE navigator, 160
Intellisense keywords, 215–216
invoke statement completion, 225
JavaScript code snippets, 260
Locals window, changing context

in, 376
matching braces, selecting/mov-

ing between, 224
navigating errors in Errors

List, 303
navigating open document

windows, 157
navigation stack, 275
Object Browser navigation/

references, 362
Object Browser overview, 356
Object Browser scope

settings, 359
outlining, collapsing code

with, 242
Pascal case, 216
Properties window, 249
Quick Find, 172
Quick Info option, 228

views (continued)
View.ClassViewSearch

command, 354–355
viewing assigned aliases

(commands), 114
viewing white space, 241–242
window layout, 90

Virtual Directories, creating in
IIS, 46–47

Visual Basic
Autos window and, 381
setting breakpoints in, 292
TODO comments in, 296
users in VS 2010, 163

Visual Basic 6 keyboard shortcuts
commands, running, 121
current line, cutting/deleting, 213
Design view, toggling, 236
file location, opening from file

tab, 158
Find Combo box keyboard

shortcuts, 182
Find In Files (Result options), 190
Find Symbol results shortcuts, 200
Go Back markers, navigating

with, 277
Go To Definition for CSS, 194
IDE navigator, 160
incremental search, 184
macros, creating/using, 144–146
multi-targeting, using older

frameworks with, 46
navigating errors in Errors

List, 303
navigation stack, 275
Object Browser navigation/

references, 362
Object Browser overview, 356
Object Browser scope

settings, 359
parameter information, 227
Quick Info option, 228
Recent Project templates in New

Project dialog, 44
Run To Cursor, 330
searching for project

templates, 43–45
transposing lines/words/

characters, 219–220
type-ahead selection support in

Solution Explorer, 52–53
Undo/Redo stack, 221
white space, viewing, 241
word wrap, 248–249

Visual C++ 2 keyboard shortcuts
breakpoints, setting in Call Stack

window, 367
breakpoints, setting on

functions, 316

 Visual Studio extensions 443

Properties window, 249
Quick Info option, 228
Recent Project templates in New

Project dialog, 44
searching for project

templates, 43–45
Solution Explorer, type-ahead

selection support in, 52–53
Visual Studio extensions

AllMargins extension, 411–413
CodeCompare

extension, 402–404
Color Theme Editor

extension, 389–391
disabling, 388
Editor Guideline

extension, 394–396
Emacs Commands

extension, 400–401
GhostDoc tool, 419–421
Image Insertion tool, 391–393
installing from Extension

Manager, 386
installing from Visual Studio

Gallery, 386–387
installing through Xcopy, 387
Open Data Protocol Visualizer

extension, 405–406
overview, 385
OverviewMargin

extension, 411–413
Power Commands

extension, 398–400
PowerConsole

extension, 404–405
Presentation Zoom

extension, 408–409
Productivity Power

Tools, 416–418
Regex Editor extension, 415–416
resources for developing, 389
Snippet Designer

extension, 418–419
Solution Explorer Tools

extension, 396–397
Spell Checker extension, 407–408
StructureAdornment

extension, 409–411
StudioShell extension, 421–423
“The Daily WTF”

extension, 401–402
Triple Click extension, 414–415
uninstalling, 389–390
VsVim extension, 406–407
Win7 Taskbar Extension, 413–414
XAML Intellisense Presenter

extension, 395–396
ZoomEditorMargin

extension, 408–409

customizing with Windows
PowerShell, 421–423

Guide Diamond, rearranging win-
dows with, 83–84

Image Library, 147–152
logging, 37–38
Online Help, table of contents

in, 4–6
project templates stored in, 77
ResetSettings switch, 39–41
running multiple versions

side-by-side, 3
in safe mode, 38
storage of item templates, 75
“Visual Studio Commands with

Arguments”, 115
Visual Studio Gallery, 386–387

Visual Studio 6 keyboard shortcuts
breakpoints, setting on

functions, 316
breakpoints window,

opening, 293
Collapse To Definitions with

outlining, 246
commands, running, 121
current line, cutting/deleting, 213
Design view, toggling, 236
Find Combo box keyboard

shortcuts, 182
Find In Files, 186
Find In Files (Result options), 190
Find In Files search results,

customizing, 206
Find Symbol results shortcuts, 200
Go To Definition for CSS, 194
Hide Selection, 244
HTML, formatting documents/

selections for, 265
incremental search, 184
Intellisense keywords, 215–216
Locals window, changing context

in, 376
macros, creating/using, 144–146
multi-targeting, using older

frameworks with, 46
navigating errors in Errors

List, 303
navigating open document

windows, 157
Object Browser navigation/

references, 362
Object Browser overview, 356
Object Browser scope

settings, 359
outlining, collapsing code

with, 242
parameter information, 227
Pascal case, 216

code snippets, using, 258
Collapse To Definitions with

outlining, 246
command aliases, 113
commands, running, 121
commenting/uncommenting code

in web pages, 217–218
current line, cutting/deleting, 213
Design view, toggling, 236
Document Outline (web

projects), 251
Exceptions dialog box, 365
Find Combo box keyboard

shortcuts, 182
Find In Files (Result options), 190
Find Symbol results shortcuts, 200
HTML code snippets, 259
HTML, formatting documents/

selections for, 265
Intellisense keywords, 215–216
invoke statement completion, 225
JavaScript code snippets, 260
Locals window, changing context

in, 376
Object Browser navigation/

references, 362
Object Browser overview, 356
Object Browser scope

settings, 359
outlining, collapsing code

with, 242
parameter information, 227
Pascal case, 216
Properties window, 249
Quick Info option, 228
QuickWatch, 343–345
searching in Toolbox, 88
Solution Explorer, type-ahead

selection support in, 52–53
Task Lists, creating code shortcuts

in, 300
testing commands, 119
visualizers (Watch windows), 345
Visual Studio 2010 Online Help,

table of contents in, 4
Watch window, 340
white space, viewing, 241
word completion, 229
word wrap, 248–249

visual experience, changing in VS
2010, 12–13

visualizers, 345–346
Visual Studio

changing color schemes in.
See color schemes, changing

changing visual experience
in, 12–13

444 .vsix files

closing tool windows, 87
Code Definition window, 301
Command Window, 122
detachable document

windows, 155
docking/undocking tool

windows, 107–110
floating tool window, docking to

previous location, 85
Immediate Window, 122
Locals, 348
moving tool windows with

keyboard, 102–103
navigating open document

windows, 157–158
QuickWatch window, 348
rearranging with Guide Diamond

(VS 2010), 83–84
searching currently selected string

without Find window, 185–186
showing hidden tool windows with

Auto Hide Channel, 100–101
Threads window, 325
tool windows, cycling through

open, 86
Watch. See Watch windows

Windows, Microsoft
Windows PowerShell, 421–423
Windows Presentation Foundation

(WPF), 13
words

transposing, 219–220
word completion, 229
word wrap, 248–249

WPFPerf tool (Windows SDK), 13
WPF Tree Visualizer, 371–373

X
XAML Intellisense Presenter exten-

sion (VS), 395–396
Xcopy, installing VS extensions

through, 387
XML, exporting DataTips as, 309
Xu, Jianchun, 404

Z
zero-length box selections, 240–241
ZoomEditorMargin extension

(VS), 408–409
zoom in/out of text with

Editor, 209–211

Regex Editor, 415
Regular Expressions, 175
“Side Effects and

Expressions”, 347
Snippet Designer extension

(VS), 419
StudioShell module, 423
“The Daily WTF” extension

(VS), 402
trace element settings, 338
tracing, 339
“Tracing and Implementing

Applications”, 325
“Trees in WPF”, 371
Triple Click extension (VS), 414
unwinding call stacks on unhan-

dled exceptions, 334
VIM extension (VS), 406
“Visual Studio Commands with

Arguments”, 115
Visual Studio, documentation

for, 37
Visual Studio extension devel-

oper’s blog post, 391
Visual Studio extensions, develop-

ment resources for, 389
Visual Studio Gallery, 386
.vsix file, 388
Wildcard searches, 175
WPFPerf tool, 13
XAML Intellisense Presenter, 396

When Breakpoint Is Hit dialog
box, 327

white space
adding extra in code, 218
viewing, 241–242

Whole Word option (Find
Symbol), 199

/wild or /l switch, 117
wildcard searches, 105–106, 175,

188
Win7 Taskbar Extension

(VS), 413–414
Window Layouts

Debug Mode, 92
Design Mode, 91
exporting, 39, 134–136
four modes of, 90–91
Full Screen Mode, 93

windows
auto-hide all tool

windows, 99–100
Autos, 348
Breakpoints, 317
browser window size, 98
Call Hierarchy window, 310–312
closing current document

window, 158

.vsix files, 388

.vssettings files, 21, 135
VsVim extension (VS), 406–407

W
Watch windows

column ordering and, 304
visualizers and, 345–346
watches, adding from variable

windows, 348–350
watching and changing

values, 340–343
Web Applications, creating in

IIS, 46–47
web development, different brows-

ers for, 96–98
web pages, commenting/uncom-

menting code in, 217–218
web projects, switching between

Design and Source views
in, 235–236

websites, for downloading
CodeCompare extension (VS), 404
“Disable Mouse Wheel Zoom”

extension, 210
posters of keyboard

shortcuts, 425
“Presentation Zoom”

extension, 211
“The Daily WTF”, 402

websites, for further information
Autos window, 379
Emacs keyboard shortcuts, 401
“Export Template Wizard”

documentation, 68
“Find Command”

documentation, 116
GhostDoc extension (VS), 421
“HTML Editor Tag Navigation in

Visual Web Developer”, 267
Image Insertion tool,

customizing, 393
“Installing Visual Studio Versions

Side-by-Side”, 3
MSDN documentation, 110
Open Data Protocol

Visualizer, 406
Open Packaging Convention, 388
“Optimizing Visual Studio 2010

and WPF Applications for
Remote Desktop”, 13

Power Commands extension
(VS), 400

Power Console extension
(VS), 405

Properties Window, 249
reference highlighting, 223

Zain Naboulsi
For over 15 years, Zain, a Senior Developer Evangelist at Microsoft, has been working with
the latest Microsoft technologies. He’s been a consultant and trainer since 1995, and he cur-
rently creates the Visual Studio Tips and Tricks series. He pioneered aspects of online com-
munity evangelism—an effort to build communities in virtual places like LinkedIn, Facebook,
and elsewhere. He is not only a proponent of the community aspect of online environments
but is also a supporter of the myriad business applications that these new mediums offer.

Zain’s efforts have been featured in eWeek, Redmond Developer News, and many other publi-
cations. He has been interviewed by Forrester Research, Gartner, and the Science Channel for
his work. He is a frequent speaker at events on LinkedIn, Facebook, and other online venues.
Zain also lectures world-wide on a variety of developer topics. You can follow his blog at
http://blogs.msdn.com/zainnab.

Sara Ford
Sara Ford is the Senior Product Manager at Black Duck Software for Ohloh.net, the largest
public destination for finding and evaluating open source software. Prior to Black Duck, she
worked for nine years at Microsoft Corp., where she was responsible for CodePlex, the open
source project hosting forge for Microsoft. She started her career as a software tester on
Visual Studio, a software development tool, where she drove the effort to make it possible
for developers who are blind or have low vision to be able to write software applications.
She is the author of Visual Studio Tips, published by Microsoft Press (2008), from which she
donated her author royalties to start a scholarship fund designed for residents of her home-
town of Waveland, Miss. to attend the Mississippi Gulf Coast Community College.

	 	 A1

Table of Contents for This Appendix
Additional	Tips	from	Chapter	1

AX.01 Getting Help Samples. A7
AX.02 Make the Start Page Go Away. A8
AX.03 Bringing Back the Start Page . A8
AX.04 Show All Settings with Visual Basic . A9
AX.05 Find Your Development Settings .A10
AX.06 Settings Automatically Saved On Exit .A11
AX.07 Customize Your Toolbars in Visual Studio 2008: Toolbars TabA12
AX.08 Customize Your Toolbars in Visual Studio 2008: Commands TabA15
AX.09 Hide or Show Default Buttons on a Toolbar .A20
AX.10 Reset Toolbars .A21

Additional	Tips	from	Chapter	2
AX.11 Sorting Templates in the New Project Dialog Box .A23
AX.12 Toggle Icon Size in the New Project Dialog Box .A24
AX.13 Choosing the StartUp Project .A25
AX.14 Linked Items in Projects .A26
AX.15 Using the Miscellaneous Files Project .A27
AX.16 Change the Order of Your Application Settings .A28
AX.17 Hide or Show the Solution File in Solution Explorer .A32
AX.18 New Project Dialog Preferred Language .A33
AX.19 Optimizing Your Project Code .A35

Additional	Tips	from	Chapter	3
AX.20 Full Screen Mode. .A38
AX.21 Split Your Windows Horizontally .A39
AX.22 Sorting Items in the Toolbox. .A40
AX.23 Icon vs. List View in the Toolbox. A41
AX.24 Hide the Status Bar .A43
AX.25 Remove the Navigation Bar. .A43
AX.26 Show Any Toolbar .A44
AX.27 Changing Auto-Hide Behavior for Tool Windows .A45
AX.28 Closing a Tool Window Tab Group. .A47
AX.29 Copy and Paste with the Command Prompt .A47

A2 Table of Contents

AX.30 Customize the Command Prompt .A50
AX.31 Show All Toolbox Controls. .A57
AX.32 Server Explorer: Data Connections. .A58
AX.33 Server Explorer: Server Event Logs. .A62
AX.34 Server Explorer: Server Management Classes . A65
AX.35 Window Layouts: File View .A68
AX.36 Rearrange Your Toolbars . A70
AX.37 Create a Shortcut Key for a Macro . A71
AX.38 How to Run External Executables from the Command Window A73

Additional	Tips	from	Chapter	4
AX.39 Close All But This on the File Tab Channel . A75
AX.40 Copy a File’s Full Path from the File Tab . A75
AX.41 Understanding the File Tab Channel Drop-Down Button . A76
AX.42 How to Disable the IDE Navigator .A77
AX.43 Thumbnail Previews in the IDE Navigator. A79
AX.44 Changing Editors Using Open With .A80

Additional	Tips	from	Chapter	5
AX.45 Using a Simple Quick Find .A84
AX.46 Using the Find Combo Box .A85
AX.47 Customize the Files to Search with Find In Files .A87
AX.48 How to Show and Hide Find Messages .A89
AX.49 How to Not Automatically Search for the Currently Selected Word A91
AX.50 Setting Bookmarks .A91
AX.51 Organizing Bookmarks. .A93
AX.52 Navigating Bookmarks. .A94

Additional	Tips	from	Chapter	6
AX.53 Turn On Line Numbers .A97
AX.54 Go to a Line Number .A98
AX.55 Comment and Uncomment Code .A99
AX.56 Select the Current Word .A100
AX.57 Delete Through the Beginning or End of a Word .A101
AX.58 Click and Drag Text to a New Location .A101
AX.59 Make Selection Uppercase or Lowercase .A104
AX.60 Brace Matching Rectangle. .A104

 Table of Contents A3

AX.61 Automatic Delimiter Highlighting .A105
AX.62 Move or Select to the Top or Bottom of the Current View in the Editor.A107
AX.63 Format the Current Document or Selection .A108
AX.64 Use F6 to Jump Between Split Windows. .A109
AX.65 Turn Off Single-Click URL Navigation in the Editor. .A109
AX.66 Hide the Vertical and/or Horizontal Scroll Bars .A110
AX.67 How to Convert Tabs to Spaces and Vice Versa .A111
AX.68 Delete Horizontal White Space. .A113
AX.69 Expanding Your Code with Outlining .A114
AX.70 Collapsing or Expanding All Your Code with Outlining .A115
AX.71 Turn Off or Turn On Outlining .A116
AX.72 Understanding Virtual Space .A117
AX.73 Document Outline: WPF and Silverlight Projects .A118
AX.74 Document Outline: Windows Form Projects .A121
AX.75 Change the Tooltip Font Size .A124
AX.76 Change the Statement Completion Font Size .A125
AX.77 Vertical Split View for Web Projects .A126
AX.78 Open JScript Braces on a New Line .A127
AX.79 Insert Spaces vs. Keep Tabs .A127
AX.80 View in Browser .A129
AX.81 Detect When a File Is Changed Outside the Environment.A130
AX.82 Turn Off the Selection Margin .A131
AX.83 Reuse the Same Editor Window When Opening Files .A132
AX.84 Sharing Snippets with Your Team. .A133
AX.85 Swap the Current Anchor Position .A135
AX.86 Guidelines: A Hidden Feature for the Visual Studio EditorA135
AX.87 Insert File as Text. .A138
AX.88 Indenting: Smart vs. Block vs. None. .A139
AX.89 Change CSS Formatting .A140
AX.90 How to Turn Off Automatic IntelliSense .A142
AX.91 Disable HTML, CSS, or JScript IntelliSense .A142
AX.92 Design and XAML on Different Document Tabs .A143
AX.93 Using Generate from Usage .A145
AX.94 IntelliSense Suggestion Mode. .A148
AX.95 Turn Off Automatic Symbol Renaming When You Rename a File in

Solution Explorer. .A149
AX.96 Mark Methods and Types as Hidden from IntelliSense and the Object

Browser .A150

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A4 Table of Contents

Additional	Tips	from	Chapter	7
AX.97 Set or Remove a Breakpoint .A153
AX.98 Enable or Disable a Breakpoint. .A154
AX.99 Start Debugging vs. Start Without Debugging .A155
AX.100 Set As Start Page .A157
AX.101 Enable Debugging in Web.Config .A159
AX.102 View the Error List Window. .A160
AX.103 Show Error Help from Errors List Window .A161
AX.104 Hide or Show Error List When the Build Finishes with ErrorsA161
AX.105 Show the Output Window During Build .A162
AX.106 Navigate Among Errors in the Output Window .A163
AX.107 Customize the Output Window .A164
AX.108 Step Out of or Over a Method .A165
AX.109 Clearing Your DataTips .A167
AX.110 Create User Tasks in the Task List .A169
AX.111 Show the Full File Path in the Task List .A172
AX.112 Disable the Prompt for Deleting Items from the Task List.A173
AX.113 Navigate Task List Entries with the Keyboard . A174
AX.114 Navigating Between Output Window Panes with the KeyboardA175
AX.115 The Watch Window: Moving Values Between Watch Windows A176
AX.116 The Immediate Window: Simple Printing and Changing Values.A178
AX.117 The Immediate Window: Working with Members .A179
AX.118 The Immediate Window: Design-Time Breakpoints .A181
AX.119 The Immediate Window: Running Commands .A182
AX.120 Class View and Object Browser Icons .A183
AX.121 Output Window vs. Immediate Window. .A185
AX.122 The Object Browser: Settings .A186
AX.123 The Object Browser: Search. .A192
AX.124 The Object Browser: Objects Pane .A195
AX.125 The Object Browser: Members Pane .A203
AX.126 The Object Browser: Description Pane .A205
AX.127 The Object Browser: Creating a Keyboard Shortcut for

Add To References .A206

 Table of Contents A5

AX.128 The Object Browser: Type-Ahead Selection .A208
AX.129 The Object Browser: Exporting Your Settings .A209
AX.130 The Immediate Window: Implicit Variables .A211
AX.131 Show External Code .A213
AX.132 Understanding Just My Code .A215
AX.133 Attach To Process (Tools vs. Debug Menu). .A218
AX.134 The Immediate Window: Running WinDbg and SOS (Son of Strike)

Commands .A219
AX.135 Creating a Class Diagram from Class View .A224
AX.136 Placing the Call Stack and Call Hierarchy Windows .A224
AX.137 Delete All Breakpoints .A226
AX.138 Make Object ID .A229
AX.139 Change Values from the Locals Window. .A231
AX.140 Debug Executable Without Using Attach to Process .A232
AX.141 The Watch Window: Hexadecimal Display .A234
AX.142 Edit And Continue .A235
AX.143 Print with Line Numbers .A237
AX.144 Printing the File Path in the Page Header. .A238
AX.145 Printing in Different Fonts and Colors. .A238
AX.146 Get Rid of the Splash Screen .A239
AX.147 Understanding Check Accessibility .A240
AX.148 Automatic vs. Default in Fonts and Colors .A242
AX.149 Visual Studio Permissions Needed on Windows Vista or Later.A248
AX.150 Show Advanced Build Configurations .A251
AX.151 Emacs Emulation .A252
AX.152 ViM Emulation .A253

	 	 A7

Appendix B

Additional Tips

Additional	Tips	from	Chapter	1
AX.01 Getting Help Samples

WindoWs Alt,H, L

Menu Help | Samples

CoMMAnd Help.Samples

Versions 2008,2010

Code vstipEnv0002

This is another one of those things that is always there but that developers tend to forget
about. You can get sample code from within Visual Studio itself. Just select Help | Samples
from your menu bar.

What you see next is version-specific—for example, in Visual Studio 2010, you will see the
page shown below:

A8 AX.02 Make the Start Page Go Away

Click the Local Samples Folder link, and you see the folder shown in the following image:

From here, you just unzip the code samples for the language you are interested in.

AX.02 Make the Start Page Go Away

WindoWs Alt,V, G

Menu View | Start Page

CoMMAnd View.StartPage

Versions 2010

Code vstipTool0002

Does the Start Page appearing every time you start Visual Studio annoy you? You can set up
Visual Studio so that the Start Page doesn’t load when you start Visual Studio. Just look in the
lower-left corner, and clear the Show Page On Startup check box.

From now on, the Start Page shows up only when you want it to.

AX.03 Bringing Back the Start Page

WindoWs Alt,V, G

Menu View | Start Page

CoMMAnd View.StartPage

Versions 2010

Code vstipTool0001

You might have noticed that when you open up a Solution or Project, the Start Page goes
away. This is the new default behavior in Visual Studio 2010.

 Appendix B Additional Tips A9

To change it, look in the lower-left corner of the new and improved Start Page, and clear the
Close Page After Project Load check box. From now on, the Start Page sticks around until you
close it yourself.

AX.04 Show All Settings with Visual Basic

WindoWs Alt,T, O

Menu Tools | Options

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

LAnguAges VB

Code vstipEnv0042

Did you choose the Visual Basic settings during your install?

If so, you might notice, when you open the Tools | Options menu, that the options are not all
there:

To bring them back, just select Show All Settings at the bottom-left of the dialog box, and all
the available settings will reappear:

A10 AX.05 Find Your Development Settings

AX.05 Find Your Development Settings

Versions 2005, 2008, 2010

Code vstipEnv0020

Development settings determine quite a bit when you use Visual Studio. For example, they
determine how you see the installed templates and what options you see initially in the
Tools | Options dialog box. You probably remember the following choices when you installed
Visual Studio:

If you happen to forget what choice you made, you can quickly get a reminder by going to
the registry key HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\<version>\Profile.

 Appendix B Additional Tips A11

Warning Don’t make any changes in the Registry for this tip; just view the data.

So, for Visual Studio 2010, the path would be HKEY_CURRENT_USER\Software\Microsoft\
VisualStudio\10.0\Profile, and then you would look at the “LastResetSettingsFile” string:

Assuming you haven’t reset the settings via Tools | Import And Export Settings lately, this
value should have the name of the settings file you chose at first launch. In my case, as shown
in the preceding graphic, I chose the “General Development Settings” (General.vssettings)
option.

AX.06 Settings Automatically Saved On Exit

WindoWs Alt,T, I

Menu Tools | Options | Import and Export Settings

CoMMAnd Tools.ImportandExportSettings

Versions 2005, 2008, 2010

Code vstipEnv0026

Visual Studio automatically saves your settings every time it is closed. To see where this file
is located (or to change the location), go to Tools | Options | Import And Export Settings and
locate the Automatically Save My Settings To This File area:

The nice thing is that you can use this to “undo” any changes you have made during a ses-
sion. So if you made some changes to Visual Studio but don’t want to keep them, you can
import the CurrentSettings.vssettings (default name) file to bring back your settings from the
last time Visual Studio was closed.

A12 AX.07 Customize Your Toolbars in Visual Studio 2008: Toolbars Tab

AX.07 Customize Your Toolbars in Visual Studio 2008: Toolbars Tab

WindoWs Alt,T, C

Menu Tools | Customize

CoMMAnd Tools.Customize

Versions 2008

Code vstipEnv0032

You can customize any toolbar in Visual Studio 2008. Just click the drop-down arrow to the
right of any toolbar, click Add Or Remove Buttons, and choose Customize:

Whichever option you choose opens the Customize dialog box:

 Appendix B Additional Tips A13

Custom Toolbars
Notice that the Toolbars tab lists all the available toolbars. When you click New to create a
customized toolbar, you are prompted to give the new toolbar a name:

After you name it, you can delete the custom toolbar by clicking Delete, or you can rename it
by clicking Rename:

A14 AX.07 Customize Your Toolbars in Visual Studio 2008: Toolbars Tab

Additionally, you can take advantage of the following options at the bottom of the dialog
box:

●● use	Large	icons Shows larger icons on toolbars in your environment.

●● show	screenTips	on	Toolbars Indicates whether you see a tooltip for the toolbar
items:

●● show	shortcut	Keys	in	screenTips Shows the shortcut key combinations in the
tooltips for items that have them.

Clicking the Keyboard button at the bottom of the Customize dialog box is just the same as
going to Tools | Options | Keyboard (see vstipTool0063, “Keyboard Shortcuts: Creating New
Shortcuts,” on page 127 for details):

 Appendix B Additional Tips A15

AX.08 Customize Your Toolbars in Visual Studio 2008: Commands Tab

WindoWs Alt,T, C

Menu Tools | Customize

CoMMAnd Tools.Customize

Versions 2008

Code vstipEnv0033

You can customize any toolbar in Visual Studio 2008. Just click the drop-down arrow to the
right of any toolbar, click Add Or Remove Buttons, and choose Customize:

Alternatively, you can go to Tools | Customize on the menu bar. Whichever option you
choose opens the Customize dialog box:

A16 AX.08 Customize Your Toolbars in Visual Studio 2008: Commands Tab

In this case, let’s look at the Commands tab:

Note To learn more about the Toolbars tab, see vstipEnv0032, “Customize Your Toolbars in
Visual Studio 2008 Toolbars Tab,” on page A12.

The best way to learn how to customize menus and toolbars is to work through an example.
For our purposes, we want to add the ability to select some code, right-click, and comment
or uncomment the code.

First, we have to go back to the Toolbars tab and pick the menu or toolbar we want to modi-
fy. For our example, let’s choose Context Menus:

 Appendix B Additional Tips A17

Now we click the Commands tab and locate the items we want to add. In this case, we dig a
bit and find Selection Comment and Selection Uncomment in the Edit category:

Now we have to see which menu we want to modify. Let’s navigate to Editor Context Menus |
Code Window to see where we want our items to go:

A18 AX.08 Customize Your Toolbars in Visual Studio 2008: Commands Tab

Now we drag the items where we want them on the menu:

If we want, we can click Modify Selection to reset, delete, modify the name, modify the but-
ton image, change the way the item is displayed, or begin a new group:

 Appendix B Additional Tips A19

We would like the new buttons to be in their own group, so we click the item just below
where we want our group to be:

 Now we click Modify Selection and choose Begin A Group to get a new group line:

Close the Customize dialog box, select some code, and right-click to see whether our items
show up:

A20 AX.09 Hide or Show Default Buttons on a Toolbar

AX.09 Hide or Show Default Buttons on a Toolbar

Versions 2005, 2008, 2010

Code vstipEnv0028

You can pick and choose which default buttons you want to show on any toolbar. Just click
the drop-down arrow to the right of the toolbar:

Then click Add or Remove Buttons:

As you can see, this gives you a list of the buttons currently being viewed. You can uncheck
some of them to create a customized look for your toolbar:

 Appendix B Additional Tips A21

Unfortunately, if you have added customized buttons, they can’t be hidden in this way:

AX.10 Reset Toolbars

Versions 2005, 2008, 2010

Code vstipEnv0029

You can reset any toolbar to its default settings. Just click the drop-down arrow to the right
of any toolbar, and then click Add or Remove Buttons:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A22 AX.10 Reset Toolbars

Click Reset Toolbar:

You now see the following dialog box:

Click Yes to remove any custom buttons and to reset the toolbar to its default settings.

 Appendix B Additional Tips A23

Note In Visual Studio 2008, you have to go through an extra menu to get to the Reset Toolbar
option:

Additional	Tips	from	Chapter	2
AX.11 Sorting Templates in the New Project Dialog Box

defAuLT Ctrl+Shift+N

VisuAL	BAsiC	6 Ctrl+Shift+N; Ctrl+N

VisuAL	C#	2005 Ctrl+Shift+N

VisuAL	C++	2 Ctrl+Shift+N

VisuAL	C++	6 Ctrl+Shift+N

VisuAL	sTudio	6 Ctrl+N

WindoWs Alt,F, N, P (new project); Alt,F, D, N (add new project)

Menu File | New Project; File | Add New Project

CoMMAnd File.NewProject; File.AddNewProject

Versions 2010

Code vstipProj0003

Ever just want to have an alphabetical list of templates in the New Project dialog box? Just
use the new Sort By drop-down list:

A24 AX.12 Toggle Icon Size in the New Project Dialog Box

AX.12 Toggle Icon Size in the New Project Dialog Box

defAuLT Ctrl+Shift+N

VisuAL	BAsiC	6 Ctrl+Shift+N; Ctrl+N

VisuAL	C#	2005 Ctrl+Shift+N

VisuAL	C++	2 Ctrl+Shift+N

VisuAL	C++	6 Ctrl+Shift+N

VisuAL	sTudio	6 Ctrl+N

WindoWs Alt, F, N, P (new project); Alt, F, D, N (add new project)

Menu File | New | Project

CoMMAnd File.NewProject

Versions 2005,2008,2010

Code vstipProj0007

When you create a new project (or add a new item) in Visual Studio, you can change the icon
size from small to medium (called large in Visual Studio 2008). To do this, you need to find
the buttons that change the icon to your desired size and then click them. Unfortunately,
these buttons appear in different places, depending on your Visual Studio version. In Visual
Studio 2010, for example, the buttons are located toward the middle-right of the New
Project or Item dialog box, next to the Sort By field:

In Visual Studio 2005 and Visual Studio 2008, the buttons are at the far right, as shown in the
following illustration:

 Appendix B Additional Tips A25

AX.13 Choosing the StartUp Project

WindoWs Alt,P, A (with project selected in Solution Explorer);
Shift+F10, A (with project selected in Solution Explorer)

Menu Project | Set as StartUp Project;
[Right-Click a project in Solution Explorer] | Set as StartUp Project

CoMMAnd Project.SetasStartUpProject

Versions 2005,2008,2010

Code vstipEnv0014

When you work with multiple projects, one is usually the StartUp Project. That’s the one
that starts up first when you start (with or without debugging). It’s easy to spot the current
StartUp Project because its name appears in bold type in Solution Explorer:

To quickly change the Startup Project, just right-click a project in Solution Explorer and
choose Set As StartUp Project from the context menu:

A26 AX.14 Linked Items in Projects

AX.14 Linked Items in Projects

defAuLT Shift+Alt+A; Ctrl+Shift+D

VisuAL	BAsiC	6 Ctrl+D; Shift+Alt+A

VisuAL	C#	2005 Shift+Alt+A

VisuAL	C++	2 Shift+Alt+A

VisuAL	C++	6 Shift+Alt+A

VisuAL	sTudio	6 Shift+Alt+A; Ctrl+Shift+D

WindoWs Alt, P, G

Menu Project | Add Existing Item

CoMMAnd Project.AddExistingItem

Versions 2005,2008,2010

Code vstipProj0022

You sometimes have a shared resource that you want to include in your project. Traditionally,
you would add the existing item (Shift+Alt+A), and Visual Studio would make a copy for you.

However, did you know you can just link to the item instead? You would typically do this
if you had a shared resource on, say, a network drive that you want to include but don’t
want to have a copy in your project. To do this, go to the Add Existing Item dialog box
(Shift+Alt+A) and choose Add As Link from the Add drop-down list.

Now a link to the file is added to your project rather than a copy:

You can tell a file is a link because it has an arrow indicator in the icon, as shown in the pre-
ceding graphic—much like the arrow you see on shortcut icons in Windows. The usual cave-
ats apply here, just as they do to any shortcut. For example, for Visual Studio to use the file,
you need to make sure that the path to the linked file is accessible.

 Appendix B Additional Tips A27

AX.15 Using the Miscellaneous Files Project

WindoWs Alt,T, O

Menu Tools | Options | Environment | Documents

CoMMAnd Tools.Options

Versions 2008,2010

Code vstipProj0012

Did you know that Solution Explorer can display a Miscellaneous Files project for files that
you do not want to permanently associate with a project or solution? Maybe you still want
to track and be able to open certain files quickly—but not associate them with the project or
solution. For example, you can create and edit files by using the Visual Studio editors without
creating a project. You can also work on files that you want to use temporarily—such as files
in which you keep development notes while you work on your solution.

To get the Miscellaneous Files folder to show up, go to Tools | Options | Environment |
Documents and select the Show Miscellaneous Files In Solution Explorer option:

Pay particular attention to the Items Saved In The Miscellaneous Files Project field, which is
initially set to zero. Leaving this value set to zero shows only extra files you currently have
open; however, setting it to another number indicates how many files you want to remember
at any given time. If you aren’t sure about what this value should be, to get started, I suggest
setting this value to at least five.

Note The Miscellaneous Files Project does not show up until you open up at least one file that
goes in it.

A28 AX.16 Change the Order of Your Application Settings

After you open a file that doesn’t belong to the solution, the folder shows up, as shown in
the following illustration:

With the folder now showing, you can right-click and open, create, or remove files:

Note Removing files from this folder doesn’t delete them permanently.

AX.16 Change the Order of Your Application Settings

Versions 2008,2010

LAnguAges C#, VB

Code vstipProj0024

When working in your project properties, you might sometimes find yourself using a variety
of application settings (I’m assuming you know how to create and use application settings;
if not, you can find more information at http://msdn.microsoft.com/en-us/library/a65txexh.
aspx):

http://msdn.microsoft.com/en-us/library/a65txexh.aspx
http://msdn.microsoft.com/en-us/library/a65txexh.aspx

 Appendix B Additional Tips A29

But what if you want to organize these settings? For example, suppose you want the
WindowColor setting to appear with the other color settings. You can change the sequence
to your preference.

Warning Changing a setting requires you to manually edit your settings file—which could get
you into trouble if you make a mistake, so do this at your own risk. Also, make a copy of your set-
tings file before editing it so that you can recover if a problem occurs.

First, save any pending changes, and close the Properties window. Now open up the project
location:

Locate your Properties folder:

A30 AX.16 Change the Order of Your Application Settings

Locate your Settings file, named Settings.settings in this example:

Open the Settings.settings file with a plain text editor such as Notepad. Notice that the file is
an XML file:

As you see in the preceding illustration, each setting resides in a <Setting> element. You just
need to rearrange the elements in the order you want them. In this case, select the <Setting>
element whose name attribute is WindowColor, as shown in the following illustration:

 Appendix B Additional Tips A31

Next just cut and paste it where you want the setting to show up. For this example, place it
just after the ForegroundColor <Setting> element:

A32 AX.17 Hide or Show the Solution File in Solution Explorer

Save your changes and close the file. Now, when you go back into your Project properties,
you’ll see the settings arranged in their new order:

AX.17 Hide or Show the Solution File in Solution Explorer

WindoWs Alt,T, O

Menu Tools | Options | Projects and Solutions | General

CoMMAnd Tools.Options

Versions 2005,2008,2010

Code vstipProj0008

If you don’t like seeing the solution file in Solution Explorer, you can easily hide it (or show it
if you have it hidden). First, take a look at the default view of Solution Explorer, with the solu-
tion file showing:

To hide the solution file, select Tools | Options | Projects And Solutions | General, and clear
the Always Show Solution option:

 Appendix B Additional Tips A33

The result is shown below:

Note This feature works only when you have just one project in the solution; if you have mul-
tiple projects in your solution, Visual Studio ignores this setting and shows you the solution node.

AX.18 New Project Dialog Preferred Language

WindoWs Alt,T, I

Menu Tools | Import and Export Settings

CoMMAnd Tools.ImportandExportSettings

Versions 2005,2008,2010

Code vstipEnv0041

As you’re examining items that Visual Studio can export, you might come across the New
Project Dialog Preferred Language option, under General Settings:

You might wonder what that means. The best way to explain is to show you a little bit more
about the inner workings of Visual Studio.

A34 AX.18 New Project Dialog Preferred Language

When you installed Visual Studio, you might recall having chosen your preferred develop-
ment settings:

Some of these options are language-specific, and some are not. If you chose General
Development Settings, for example, you have no preferred language in the New Project dia-
log box, so you see a list of languages:

Without a preferred language, the New Project dialog box groups all the language-specific
templates into separate nodes, so you can easily select the one you want. However, if you
chose a development setting option associated with a particular language, such as VB, you
see something different in the New Project dialog box:

 Appendix B Additional Tips A35

As you can see, the other top-level language nodes have disappeared, because you already
indicated that Visual Basic is your preferred language. Instead, you’ll see an Other Languages
node that represents all the other languages:

So, to come full circle, when you export the New Project Dialog Preferred Language item, it
saves this structure for you, which you can then later import.

AX.19 Optimizing Your Project Code

defAuLT Alt+Enter (with project selected in Solution Explorer)

VisuAL	BAsiC	6 Alt+Enter (with project selected in Solution Explorer)

VisuAL	C#	2005 Alt+Enter (with project selected in Solution Explorer)

VisuAL	C++	2 Alt+Enter (with project selected in Solution Explorer)

VisuAL	C++	6 Alt+F7; Alt+Enter (with project selected in Solution Explorer)

WindoWs Alt,P, P

Menu Project | [Project Name] Properties

CoMMAnd Project.Properties

Versions 2008,2010

LAnguAges C#, C++, VB

Code vstipProj0014

In vstipDebug0032 (“Understanding Just My Code,” page A215), we touched on optimiza-
tion. When optimization is turned off (the default setting for Debug builds), it factors into
the code being considered “yours” for the purposes of determining what is “Just My Code.”
Generally, you won’t turn this on for Debug builds. If you do, debug symbols are not gener-
ated and you can’t step through your code.

A36 AX.19 Optimizing Your Project Code

When you create a Release build, Visual Studio turns optimization on by default. So what is
optimization? According to the documentation, the optimization option “enables or disables
optimizations performed by the compiler to make your output file smaller, faster, and more
efficient.”

It’s useful to know where to find this option.

C#
In C#, you’ll find the Optimize Code option in the Project properties on the Build tab:

VB
In VB, it is also in the Project properties, but on the Compile tab, and you need to click
Advanced Compile Options to find it:

 Appendix B Additional Tips A37

Next, locate the Enable Optimizations option:

C++
While VB and C# have only a single option to control optimization, C++ supports a number
of more specific optimizations. For example, you can choose to optimize for application
speed or for program size. Enabling the optimizations setting from the Project properties en-
ables full optimization (/Ox).

You can get a sense of the full range of /O features in the following list at http://msdn.microsoft.
com/en-us/library/k1ack8f1.aspx:

●● /O1 optimizes code for minimum size.

●● /O2 optimizes code for maximum speed.

●● /Ob controls inline function expansion.

●● /Od disables optimization, speeding compilation and simplifying debugging.

●● /Og enables global optimizations.

●● /Oi generates intrinsic functions for appropriate function calls.

●● /Os tells the compiler to favor optimizations for size over optimizations for speed.

●● /Ot (a default setting) tells the compiler to favor optimizations for speed over optimiza-
tions for size.

●● /Ox selects full optimization.

●● /Oy suppresses the creation of frame pointers on the call stack for quicker function
calls.

Finally
Optimization does a lot of cool things that are great for a shipping application—but not for
one you are currently working on and debugging. It’s easy to get deep into what the various
optimization options actually do; Eric Lippert, of Microsoft, wrote an excellent article on this
subject, titled “What Does the Optimize Switch Do,” which you can find at http://blogs.msdn.
com/b/ericlippert/archive/2009/06/11/what-does-the-optimize-switch-do.aspx.

http://msdn.microsoft.com/en-us/library/k1ack8f1.aspx
http://msdn.microsoft.com/en-us/library/k1ack8f1.aspx
http://blogs.msdn.com/b/ericlippert/archive/2009/06/11/what-does-the-optimize-switch-do.aspx
http://blogs.msdn.com/b/ericlippert/archive/2009/06/11/what-does-the-optimize-switch-do.aspx

A38 AX.20 Full Screen Mode

Additional	Tips	from	Chapter	3
AX.20 Full Screen Mode

defAuLT Shift+Alt+Enter

VisuAL	BAsiC	6 Shift+Alt+Enter

VisuAL	C#	2005 Shift+Alt+Enter

VisuAL	C++	2 Shift+Alt+Enter

VisuAL	C++	6 Shift+Alt+Enter

VisuAL	sTudio	6 Shift+Alt+Enter

WindoWs Alt,V, U

Menu View | Full Screen

CoMMAnd View.FullScreen

Versions 2005, 2008, 2010

Code vstipEnv0024

You can quickly switch from any current window state to Full Screen Mode by pressing
Shift+Alt+Enter:

By default, this action hides the toolbars and takes up as much of the screen as possible. The
advantage, of course, is that you get more real estate to work with when you need more
room.

To come out of Full Screen Mode, just press Shift+Alt+Enter again and you are returned to
normal view.

 Appendix B Additional Tips A39

AX.21 Split Your Windows Horizontally

WindoWs Alt,W, P (toggle split and remove)

Menu Window | Split; Window | Remove Split

CoMMAnd Window.Split (toggle split and remove)

Versions 2005, 2008, 2010

Code vstipEnv0004

In Visual Studio, you can split your windows horizontally. This feature has been available in
Microsoft products for quite a while. Just go to Window | Split on the menu bar, or you can
use the following mouse technique.

Go the upper-right corner of a document window, and look for the splitter control, as shown
in the following illustration:

Click and drag the control down to begin the split process:

Now you have a horizontal split, so you can do things like see different sections of your
document at the same time:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A40 AX.22 Sorting Items in the Toolbox

To remove a split, select Window | Remove Split—or just double-click the line separating the
two sections.

AX.22 Sorting Items in the Toolbox

WindoWs Shift,F10, O (with the Toolbox selected)

Menu [Right Click the Toolbox] | Sort Items Alphabetically

CoMMAnd Tools.SortItemsAlphabetically

Versions 2005, 2008, 2010

Code vstipTool0052

Warning As far as I know, there is no easy way to undo the sorting action other than resetting
the Toolbox, so make sure you really want the Toolbox items listed alphabetically before you ap-
ply this tip.

If you don’t like the default sort order for items in the Toolbox, you can right-click the
Toolbox and then choose to sort the items alphabetically:

Selecting this option sorts the items by name, assuming they weren’t sorted that way already:

 Appendix B Additional Tips A41

AX.23 Icon vs. List View in the Toolbox

WindoWs Shift,F10, L (with the Toolbox selected will toggle List View)

Menu [Right Click the Toolbox] | List View (toggle)

CoMMAnd Tools.ListView

Versions 2005, 2008, 2010

Code vstipTool0053

The default view of items in the Toolbox is List View, as shown in the following illustration:

You can change this to the Icon View if you prefer, by right-clicking the Toolbox and clicking
List View, which turns off the List View option:

A42 AX.23 Icon vs. List View in the Toolbox

This produces the result shown in the following illustration:

To get the List View back again, right-click in Icon View, and click List View again.

This option applies only on the current Toolbox tab, so you can have your tabs organized dif-
ferently based on your preference:

 Appendix B Additional Tips A43

AX.24 Hide the Status Bar

WindoWs Alt,T, O

Menu Tools | Options | Environment | General

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0024

Removing the Status Bar gives you a little extra space at the bottom of your screen. Without
it you cannot get status messages, so remove it only if you are sure you don’t need it. To re-
move the Status Bar, go to Tools | Options | Environment | General and clear the Show Status
Bar option:

Before (status bar is where the word “Ready” is located):

After (no status bar):	

AX.25 Remove the Navigation Bar

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | [All Languages or Specific Language]

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0028

If you find you don’t use the navigation bar, shown in the following illustration, and want a
little extra space, how can you make it go away?

A44 AX.26 Show Any Toolbar

Just go to Tools | Options | Text Editor | [All Languages or Specific Language], and clear the
Navigation Bar check box:

The following illustration shows the result:

AX.26 Show Any Toolbar

WindoWs Alt,V, T, [Up or Down] Arrow

Menu View | Toolbars | [Toolbar]

Versions 2005, 2008, 2010

Code vstipEnv0025

You can show any toolbar at any time. Just right-click an existing toolbar, and left-click the
one you want to see:

Not all toolbars will have their buttons available, because it depends on your context. For
example, the Database Diagram Toolbar (shown in the following illustration) buttons are not
available until you are actually working on a diagram:

 Appendix B Additional Tips A45

AX.27 Changing Auto-Hide Behavior for Tool Windows

WindoWs Alt,T, O

Menu Tools | Options | Environment | General

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0035

By default, you could easily have several tool windows in a tab group, as shown here:

So to clear your workspace, you click the auto-hide button:

Now all the tool windows are hidden together. Next you can go to Tools | Options |
Environment | General and select the Auto Hide Button Affects Active Tool Window Only
option:

Now you no longer get tabs at the bottom when you interact with a tool window:

A46 AX.27 Changing Auto-Hide Behavior for Tool Windows

The tool windows have to be docked individually to get the tabs again:

Now, when you auto-hide a window, only that window is hidden; the rest of the tab group
remains visible:

 Appendix B Additional Tips A47

AX.28 Closing a Tool Window Tab Group

WindoWs Shift,Esc

Menu Tools | Options | Environment | General

CoMMAnd Window.CloseToolWindow

Versions 2005, 2008, 2010

Code vstipTool0040

By default, when you click the Close button for a tool window in a tab group, it normally
closes only the current tool window:

However, you can change this behavior by going to Tools | Options | Environment | General
and clearing the Close Button Affects Active Tool Window Only check box, as shown in the
following illustration:

Now, closing any one tool window in the tab group causes all tool windows in that group to
be closed.

AX.29 Copy and Paste with the Command Prompt

WindoWs Enter (copy)

Menu System Menu | Edit | [Mark, Copy, Paste, Select All]

Code vstipTool0057

In a previous tip, we looked at how to work with the command prompt history. In this tip, we
examine how to copy and paste text to and from the Command Prompt window.

A48 AX.29 Copy and Paste with the Command Prompt

Pasting
Visual Studio offers a rich set of tools to help you work with text in the command prompt
windows. For example, you can copy text and paste it by going to System Menu | Edit | Paste,
as shown in the following illustration.

Note The System menu is the icon in the upper-left corner of the window.

If you have a folder or file path you want to use, you can always find the folder or file in
Windows Explorer and drag the item to the command prompt, as shown in the following
illustration:

The preceding action pastes the full path to the folder or file in the window:

 Appendix B Additional Tips A49

Copying
You can copy text from the command prompt by marking the text. Go to System Menu |
Edit | Mark, as shown in the following illustration:

Highlight the text you want by clicking and dragging over that text:

If you want, you can always go to System Menu | Edit | Select All:

Press Enter to copy the text to the clipboard, and then paste the text where you want.

A50 AX.30 Customize the Command Prompt

AX.30 Customize the Command Prompt

WindoWs Alt,Space, P

Menu System Menu | Properties

Code vstipTool0058

If you are going to use the command prompt, you might want to customize the look and
feel:

Note If you want to customize the Command window, you need to run it as Administrator. To
do this, just right-click the command prompt icon and choose Run As Administrator:

Let’s review some basic settings you might want to take advantage of early on. First go to
System Menu | Properties:

 Appendix B Additional Tips A51

Note Just as a reminder, the System menu is the icon at the upper-left corner of the window:

Options
On the Options tab, notice that we have several items of interest:

A52 AX.30 Customize the Command Prompt

Cursor Size
Represents the size of the flashing cursor.

Small

Medium

Large

Command History
Deals with how many commands are remembered by setting the buffer size (number of com-
mands to remember) times the number of buffers. The default is 200 commands, but this
value can be changed to 999 for each value for a max total of 998,001 commands that can
be remembered. I usually set Buffer Size to 100 and Number Of Buffers to 5, for a total of
500 commands remembered.

I usually select the Discard Old Duplicates option. Some people leave this off for running the
same command several times, so you might want to leave this off in some cases. Selecting
this option removes duplicates so that they don’t show up several times in the command
history.

 Appendix B Additional Tips A53

Before:

After:

Edit Options
Define how you can do certain actions. Quick Edit Mode allows you to use your mouse to
work with text in the window, so I suggest you turn it on. Insert Mode is on by default and
simply means that if you move the cursor into a command (using the arrow keys), you can
type and it inserts (instead of overwrites) the text after it.

A54 AX.30 Customize the Command Prompt

Before:

After:

Font
The Font tab is pretty self-explanatory. It allows you to pick various font properties for the
command window. Play with these to suit your needs:

 Appendix B Additional Tips A55

Layout
The Layout tab is very important. Let’s look at some of these options:

Screen Buffer Size
Allows you to set how wide and tall you want the window information to be. Width should
be less than the window size width you anticipate. Because I tend to maximize my command
windows, I set this to 100. Height is how many lines you want to be able to scroll back to. I set
this to 5000 just because I like large buffer sizes. Most folks tend to set this to around 1000
or so.

Window Size
Sets the initial size of the command window. You can play with these settings to find a suit-
able size for you. Because I maximize my command windows, I just leave this setting alone.

Window Position
The position you want the window to start in. I would leave this setting be, but if you want to
change it, set Left and Top to 0 and then increase from there to suit your taste.

Colors
The Colors tab allows you to change two major aspects of the color scheme for the com-
mand window: one for the regular window and one for the pop-up window you get when
you press F7:

A56 AX.30 Customize the Command Prompt

These settings are completely personal preferences, so try adjusting them and looking at the
previews at the bottom to determine what schemes suit you. I tend to favor the old school
“green screen” colors on my Command windows (green text with a black background).

Resetting Back to Defaults
If you totally mess up your settings, you can always get all the default settings back by going
to System Menu | Defaults:

 Appendix B Additional Tips A57

After clicking Default, you see the properties with all tabs set to their default settings. Just
click OK, and you have all your defaults back:

Note When you restore the default settings, notice the AutoComplete option that wasn’t en-
abled before. This option allows for tab completion of file names. (See vstipTool0056, “Command
Prompt Tab Completion,” page 105.) You should always leave this setting on.

AX.31 Show All Toolbox Controls

WindoWs Shift,F10, S (with Toolbox selected)

Menu Right-click | Show All

CoMMAnd Tools.ShowAll

Versions 2005, 2008, 2010

Code vstipTool0060

Sometimes when you install controls for the Toolbox, you might not see the controls because
they are in the wrong context. For example, a WPF control wouldn’t show up in the Toolbox
while you are typing code. When the controls don’t show up, you might think the add-in
failed to install the Toolbox controls. This tip shows how you can confirm everything installed
in the Toolbox.

To see all the controls that are installed, right-click the Toolbox and select Show All, as shown
in the following illustration:

A58 AX.32 Server Explorer: Data Connections

Now all the controls are visible, regardless of context:

AX.32 Server Explorer: Data Connections

defAuLT Ctrl+Alt+S (view server explorer)

VisuAL	BAsiC	6 Ctrl+Alt+S (view server explorer)

VisuAL	C#	2005 Ctrl+Alt+S; Ctrl+W, L; Ctrl+W, Ctrl+L (view server explorer)

VisuAL	C++	2 Ctrl+Alt+S (view server explorer)

VisuAL	C++	6 Ctrl+Alt+S (view server explorer)

VisuAL	sTudio	6 Ctrl+Alt+S (view server explorer)

WindoWs Alt,V, V (view server explorer); Alt,T, D (connect to database)

Menu View | Server Explorer; Tools | Connect to Database

CoMMAnd View.ServerExplorer; Tools.ConnecttoDatabase

Versions 2005, 2008, 2010

Code vstipTool0121

Server Explorer (Ctrl+Alt+S) is the server management tool window that comes with Visual
Studio. One of the things you can use this window for is to open data connections:

 Appendix B Additional Tips A59

Data Connections in Other Areas
The data connections you have in Server Explorer can be used in other areas, such as ADO.
NET Entity Data Models:

When you go to create Entity Data Models that are generated from a database, you can
choose from the data connections you already have or you can create a new connection to
be added to the list.

Data Connections in Server Explorer
There is an incredible amount of power and control that is available here. Let’s look at a
couple of examples.

A60 AX.32 Server Explorer: Data Connections

Tables

At the most basic level, you can list out the tables in the database. Additionally, you can
right-click any table and see most of the features you can leverage, as shown in the following
illustration:

 Appendix B Additional Tips A61

Notice that you can add a new table, create a new query, or just show the data in the table,
among other tasks.

Stored Procedures

One of the great database features in Visual Studio is that not only can you create and edit
stored procedures, but you can step into them as well:

Finally
Don’t take the Database Connection features in Server Explorer for granted. These features
make a great deal of power available to you, and you should invest some time to see whether
these are helpful for your work.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A62 AX.33 Server Explorer: Server Event Logs

AX.33 Server Explorer: Server Event Logs

defAuLT Ctrl+Alt+S

VisuAL	BAsiC	6 Ctrl+Alt+S

VisuAL	C#	2005 Ctrl+Alt+S; Ctrl+W, L; Ctrl+W, Ctrl+L

VisuAL	C++	2 Ctrl+Alt+S

VisuAL	C++	6 Ctrl+Alt+S

VisuAL	sTudio	6 Ctrl+Alt+S

WindoWs Alt,V, V

Menu View | Server Explorer

CoMMAnd View.ServerExplorer

Versions 2005, 2008, 2010

Code vstipTool0122

Most people believe that Server Explorer is the tool window we use for data connections (see
vstipTool0121, ”Server Explorer Data Connections,” page A58), and they assume that’s pretty
much where the experience ends.

This unsung hero really does a lot more if you let it. For example, the Servers section comes
with a power that you might not even know existed—working with servers.

Adding Servers
To get started, Server Explorer comes with the local machine already in the list of Servers,
plus you can add additional servers as needed:

Don’t be fooled by the term “Server”; it really means any computer that you want to connect
to for information. In these examples, my “server” is a Microsoft Windows 7 Professional–
based machine.

 Appendix B Additional Tips A63

Event Logs
After you have the server that you want, you can start working with features. The Event Logs
section is a perfect example. The following illustration shows what is on my machine for
Event Logs in Server Explorer:

You can use this area to start the Event Viewer if you need it:

Or you can take a quick view of events in any of the various categories by drilling down into
the tree:

A64 AX.33 Server Explorer: Server Event Logs

Click and Drag Components
Event log components can even be dragged onto a Windows form or component class de-
sign surface so that you can manipulate them:

Note For more information, see the topic “How to: Add Items from Server Explorer,” at http://
msdn.microsoft.com/en-us/library/84s2c1k0.aspx.

When the component is in place, you can write code to perform various actions. In the fol-
lowing example, an entry is written to the event log:

This is a great way to have event log information available to the user. Taking time to learn
Server Explorer can definitely bring you benefits in your daily work.

http://msdn.microsoft.com/en-us/library/84s2c1k0.aspx
http://msdn.microsoft.com/en-us/library/84s2c1k0.aspx

 Appendix B Additional Tips A65

AX.34 Server Explorer: Server Management Classes

defAuLT Ctrl+Alt+S

VisuAL	BAsiC	6 Ctrl+Alt+S

VisuAL	C#	2005 Ctrl+Alt+S; Ctrl+W, L; Ctrl+W, Ctrl+L

VisuAL	C++	2 Ctrl+Alt+S

VisuAL	C++	6 Ctrl+Alt+S

VisuAL	sTudio	6 Ctrl+Alt+S

WindoWs Alt,V, V

Menu View | Server Explorer

CoMMAnd View.ServerExplorer

Versions 2005, 2008, 2010

Code vstipTool0123

The management classes in Server Explorer give you a view into the system. For example, you
can use management classes to see network shares, as shown in the following illustration:

A66 AX.34 Server Explorer: Server Management Classes

Create
You can also right-click a node and choose Create from the menu to make a new instance:

Unfortunately, you get a really ugly and unfriendly dialog box to use when you do this, as
shown in the following illustration:

 Appendix B Additional Tips A67

Generate Classes
One better way to work with the management classes is to right-click one and then generate
a class from the menu:

This gives you a class you can use as you see fit:

Click and Drag Components
The management classes can also be dragged onto a Windows form or component class de-
sign surface so that you can manipulate them.

Note For more information, see the topic “How to: Add Items from Server Explorer,” at http://
msdn.microsoft.com/en-us/library/84s2c1k0.aspx.

http://msdn.microsoft.com/en-us/library/84s2c1k0.aspx
http://msdn.microsoft.com/en-us/library/84s2c1k0.aspx

A68 AX.35 Window Layouts: File View

AX.35 Window Layouts: File View

Versions 2005, 2008, 2010

Code vstipEnv0053

I talked about the different window layouts in vstipEnv0051, “Window Layouts: The Four
Modes,” on page 90, and vstipEnv0052, “Window Layouts: Design, Debug, and Full Screen,”
on page 91. Now I want to cover a lesser-known layout known as File View.

You get to File View by putting in the file name of any file associated with Visual Studio at the
command prompt. In the following example, I’ve changed my directory to one of my solu-
tions, and I’m putting in the name “SomethingToDo.cs”:

When I tried to do this without running the command prompt as Administrator, it wouldn’t
load the file. So you might have to run the command prompt as Administrator. If Visual
Studio is already open, it shows the file and if not, it loads and shows the file:

 Appendix B Additional Tips A69

Notice that it is a very sparse layout. The good news is that you can customize it any way you
want, to have quick access to the tools you need most. I’ll add Server Explorer for now:

If you make changes, they are saved to your .vssettings file when you close Visual Studio.
Remember that each mode is a distinct area, so the changes you make here are not seen in
any of the other window modes.

A70 AX.36 Rearrange Your Toolbars

AX.36 Rearrange Your Toolbars

Versions 2005, 2008, 2010

Code vstipEnv0027

You can easily rearrange your toolbars by simply putting your mouse over the grip control
(the four vertical dots to the left of every toolbar), as shown in the following illustration:

When you get the four-directional mouse pointer, just click and drag the toolbar to the new
position:

Be careful; it’s real easy to get a shortened toolbar on your hands when moving toolbars be-
side other toolbars, as shown in the following illustration:

Note You know that you aren’t seeing all the buttons on a toolbar if there are two arrows side-
by-side on the far right of that toolbar, as shown in the following illustration:

Of course, this shortened toolbar might be exactly what you want because the rest of the
buttons are accessed by clicking on the drop-down arrow:

 Appendix B Additional Tips A71

If this is not what you want, just click and drag the grip control of the toolbar to the right of
the shortened toolbar and uncover as many buttons as you like:

In Visual Studio 2008 and 2005, you can also make the toolbar a floating one by dragging it
off the toolbar area, as shown in the following illustration:

To put it back, just double-click anywhere on the title bar of the toolbar.

AX.37 Create a Shortcut Key for a Macro

WindoWs Alt, T, O

Menu Tools | Options | Environment | Keyboard

CoMMAnd Tools.CustomizeKeyboard

Versions 2005, 2008, 2010

Code vstipTool0066

We covered creating shortcuts in vstipTool0063 (“Keyboard Shortcuts: Creating New
Shortcuts,” page 127). Assuming you have a macro you would like to attach a shortcut key to,
you can easily make your macros accessible. Let’s look at an example to show you how. First,
go to Tools | Options | Environment | Keyboard:

A72 AX.37 Create a Shortcut Key for a Macro

To access your macros, type macros. in the Show Commands Containing area:

In this case, let’s bind the Macros.Samples.Utilities.TurnOffLineNumbers and Macros.Samples.
Utilities.TurnOnLineNumbers macros.

Warning Make sure the keyboard shortcuts you use here aren’t already assigned to some-
thing else. They most likely aren’t, but you should double-check by reviewing vstipTool0063 ,
“Keyboard Shortcuts Creating New Shortcuts,” page 127.

Let’s bind Macros.Samples.Utilities.TurnOnLineNumbers to Ctrl+M, CTRL+1, as shown in the
following illustration:

Let’s bind Macros.Samples.Utilities.TurnOffLineNumbers to Ctrl+M, Ctrl+0 (zero), as shown in
the following illustration:

 Appendix B Additional Tips A73

Click OK, and let’s test out our shortcuts. Go to any source code, and press Ctrl+M, Ctrl+0 to
turn line numbers off and Ctrl+M, Ctrl+1 to turn them on.

AX.38 How to Run External Executables from the Command Window

CoMMAnd Tools.Shell

Versions 2005, 2008, 2010

Code vstipTool0089

You can run external programs from the Command Window (Ctrl+Alt+A) by using the Tools.
shell command. This can be useful if you run certain executables often (like Xcopy) and
want to turn the action into a command alias. See vstipTool0068 (“Understanding Command
Aliases,” page 113).

The general syntax for the command is as follows:

Tools.Shell [/command] [/output] [/dir:folder] path [args]

Arguments
Following are some key arguments you can use for this command:

●● /commandwindow, /command, /c, or /cmd

Optional. Specifies that the output for the executable is displayed in the Command
Window.

●● /dir:folder or /d:	folder	

Optional. Specifies the working directory to be set when the program is run.

A74 AX.38 How to Run External Executables from the Command Window

●● /outputwindow, /output, /out, or /o

Optional. Specifies that the output for the executable is displayed in the Output
window.

For example, to run the Xcopy command, it would appear as shown in the following
illustration:

Just for fun, because I don’t actually have the files in the sample command, the output shown
in the following illustration is the result of running the Xcopy command:

As you can see, the output from Xcopy was redirected to the Command Window and tells me
that it can’t find a file.

If the item you want to run isn’t in the path environment variable, you must include the
full path (surrounded by quotes if any spaces are in the path), as shown in the following
illustration:

 Appendix B Additional Tips A75

Additional	Tips	from	Chapter	4
AX.39 Close All But This on the File Tab Channel

defAuLT Alt+- (minus sign), A [VS2010 Only]

VisuAL	BAsiC	6 [no shortcut]

VisuAL	C#	2005 Alt+- (minus sign), A [VS2010 Only]

VisuAL	C++	2 Alt+- (minus sign), A [VS2010 Only]

VisuAL	C++	6 Alt+- (minus sign), A [VS2010 Only]

VisuAL	sTudio	6 Alt+- (minus sign), A [VS2010 Only]

WindoWs [no shortcut]

CoMMAnd File.CloseAllButThis; Window.ShowDockMenu

Versions 2005, 2008, 2010

Code vstipEnv0011

If you ever get the urge to close every file except the one you are currently working on, you
can just right-click the current file tab and choose Close All But This:

AX.40 Copy a File’s Full Path from the File Tab

defAuLT Alt+- (minus sign), F [VS2010 Only]

VisuAL	BAsiC	6 [no shortcut]

VisuAL	C#	2005 Alt+- (minus sign), F [VS2010 Only]

VisuAL	C++	2 Alt+- (minus sign), F [VS2010 Only]

VisuAL	C++	6 Alt+- (minus sign), F [VS2010 Only]

VisuAL	sTudio	6 Alt+- (minus sign), F [VS2010 Only]

WindoWs [no shortcut]

CoMMAnd File.CopyFullPath; Window.ShowDockMenu

Versions 2005, 2008, 2010

Code vstipEdit0013

You can quickly copy the full path of any file. Just right-click the tab for the file, and choose
Copy Full Path, as shown in the following illustration:

A76 AX.41 Understanding the File Tab Channel Drop-Down Button

You now have the full path in your clipboard so that you can paste it (Ctrl+V) anywhere you
need it.

AX.41 Understanding the File Tab Channel Drop-Down Button

Versions 2005, 2008, 2010

Code vstipEnv0012

Here is a convenient way to know whether you are seeing all your files on the File Tab
Channel.

Let’s say you have a couple of files open: Notice that the button to the far right looks like an
arrow pointing down:

But if you open up a few more files so that they all can’t be seen on the file channel, the
button changes to let you know that all the files are not visible on the File Tab Channel (indi-
cated by the line above the arrow in the following illustration):

If you click the button, it gives you a list of all the files so that you can pick the one you want
from the list.

 Appendix B Additional Tips A77

AX.42 How to Disable the IDE Navigator

defAuLT Ctrl+F6 (next); Ctrl+Shift+F6 (previous)

VisuAL	BAsiC	6 Ctrl+F6 (next); Ctrl+Shift+F6 (previous)

VisuAL	C#	2005 Ctrl+F6 (next); Ctrl+Shift+F6 (previous)

VisuAL	C++	2 Ctrl+F6; Ctrl+Tab (next); Ctrl+Shift+F6; Ctrl+Shift+Tab (previous)

VisuAL	C++	6 Ctrl+F6 (next); Ctrl+Shift+F6 (previous)

VisuAL	sTudio	6 Ctrl+F6; Ctrl+Tab (next); Ctrl+Shift+F6; Ctrl+Shift+Tab (previous)

WindoWs [no shortcut]

CoMMAnd Window.NextDocumentWindow; Window.PreviousDocumentWindow

Versions 2005, 2008, 2010

Code vstipEnv0039

By default, if you press Ctrl+Tab, you get the IDE Navigator, as shown in the following
illustration:

Some people don’t like this feature and instead would like to just iterate through open docu-
ment tabs.

This behavior is bound to Ctrl+ F6 and to Ctrl+Shift+F6 in the General settings, but some
people don’t like this key combination.

You can easily rebind the commands to Ctrl+Tab and Ctrl+Shift+Tab. If you go to
Tools | Options | Environment | Keyboard, you can see that Ctrl+Tab is bound to
Window.NextDocumentWindowNav:

A78 AX.42 How to Disable the IDE Navigator

If you assign Ctrl+Tab to Window.NextDocumentWindow instead, you can see the result in
the following illustration:

The IDE Navigator does not show up anymore, and instead Ctrl+Tab iterates through the
open document tabs. If you like this, you might want to bind Ctrl+Shift+Tab to Window.
PreviousDocumentWindow as well:

 Appendix B Additional Tips A79

If you don’t like the new setup, you can always reverse the process and rebind
Ctrl+Tab and Ctrl+Shift+Tab to Window.NextDocumentWindowNav and Window.
PreviousDocumentWindowNav, respectively.

For more information about binding keyboard shortcuts, refer to vstipTool0063 (“Keyboard
Shortcuts Creating New Shortcuts,” page 127).

AX.43 Thumbnail Previews in the IDE Navigator

Versions 2010

Code vstipTool0113

In vstipTool0023 (“Using the IDE Navigator,” page 160), I show you how to use the IDE
Navigator. This next tip comes from Paul Harrington on the Visual Studio Team. In Visual
Studio 2008, when you used the IDE Navigator, you could also see thumbnail previews of the
documents in the list. However, this feature was removed from Visual Studio 2010. The good
news is that the feature is still there.

Warning This tip requires you to add a value to the registry, so you do this at your own risk.
And this solution has been known to not always work 100 percent of the time.

Open up the registry (regedit.exe), and go to HKEY_CURRENT_USER\Software\Microsoft\
VisualStudio\10.0\General.

Now right-click the General key, and add a new DWORD value:

Call it ShowThumbnailsOnNavigation, and set the value to 1:

A80 AX.44 Changing Editors Using Open With

Now you should have the thumbnail preview available:

Troubleshooting
This is a little graphics intensive, so if you don’t see the thumbnail, it could be because
you haven’t enabled the rich client visual experience under Tools | Options | Environment |
General:

AX.44 Changing Editors Using Open With

WindoWs Alt,V, N

Menu View | Open With

CoMMAnd View.OpenWith

Versions 2008, 2010

Code vstipEnv0037

 Appendix B Additional Tips A81

You can use Open With to change the editor used to view a file. You can use this feature in
several ways. For example, if you have an existing file open, you can go to View | Open With:

For files not opened yet, you can use this option from inside the Open File dialog box:

Regardless of the method used, you get the Open With dialog box:

A82 AX.44 Changing Editors Using Open With

Notice, in this example, that one editor is the default editor for the file type you want to
open. This can easily be changed by selecting a new editor and clicking Set As Default:

Warning Use this feature at your own risk, because it’s important to be sure of the editor you
are using before you make it the default.

 Appendix B Additional Tips A83

Notice the Add button, shown in the following illustration, which enables you to indicate new
programs that you want to use for opening files:

Example
One common use of Open With is to enable source code editing for WPF files. Normally, you
get a designer/code view:

To enable source code editing more easily, first use Open With and select Source Code (Text)
Editor:

A84 AX.45 Using a Simple Quick Find

Now you should see a “code only” view of the XAML:

Additional	Tips	from	Chapter	5
AX.45 Using a Simple Quick Find

defAuLT Ctrl+F

VisuAL	BAsiC	6 Ctrl+F

VisuAL	C#	2005 Ctrl+F

VisuAL	C++	2 Alt+F3

VisuAL	C++	6 Ctrl+F

VisuAL	sTudio	6 Ctrl+F

WindoWs Alt,E, F, F

Menu Edit | Find and Replace | Quick Find

CoMMAnd Edit.Find

Versions 2005, 2008, 2010

Code vstipFind0006

You can do a simple find anytime you want by pressing Ctrl+F to bring up the Quick Find
window:

 Appendix B Additional Tips A85

The Find What area is automatically prepopulated with the word the cursor was currently on,
or you can type in a new one.

To start, just press Enter or click Find Next, and the find operation finds the next instance
of the search term you are looking for. By default, it looks from the current cursor location
downward.

The search continues until you reach the end of the document, and then it returns to the be-
ginning and shows the following dialog box:

As you can see, you can turn this off by clearing the Always Show This Message check box so
that it doesn’t annoy you.

AX.46 Using the Find Combo Box

defAuLT Ctrl+D

VisuAL	BAsiC	6 [no shortcut]

VisuAL	C#	2005 Ctrl+/

VisuAL	C++	2 Ctrl+D; Ctrl+F; Ctrl+A

VisuAL	C++	6 Ctrl+D

VisuAL	sTudio	6 Ctrl+Shift+F

WindoWs Ctrl+Shift+F

CoMMAnd Edit.GoToFindCombo

Versions 2005, 2008, 2010

Code vstipFind0009

While it tends to get ignored sometimes, the Find Combo box is actually quite useful. In the
following examples, I’ll show how you can quickly use this area while you are writing your
code:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A86 AX.46 Using the Find Combo Box

It can be used as a quick way to go to a line without any dialog boxes popping up. Just press
Ctrl+D to get to the combo box, and then type in a line number, and finally, press Ctrl+G to
go to the line number you typed:

Also, it can be used to execute commands by the pressing Ctrl+Forward slash (/) followed by
your command:

Note Ctrl+/ is bound to the Tools.goToCommandLine command for all languages except C#.

Its primary use, however, is to perform a simple find operation. Press Ctrl+D, type in whatever
you are looking for, and press Enter:

It finds the next instance of the search term. If you have a lot of text to go through, you can
hold down the Enter key to quickly go through the document. One other thing to note is
that, unlike a Quick Find, this find does not give you a dialog box telling you when you have
looped around to where you started.

When you use this feature, pay attention to the status bar at the bottom. It shows you all the
options that have been set for the current search:

The options used here are set in the Quick Find tool window (Ctrl+F):

 Appendix B Additional Tips A87

Last, but certainly not least, is the Find In Files button, which brings up the Find In Files tool
window (see vstipFind0013, “Find in Files: Find Options,” page 186):

AX.47 Customize the Files to Search with Find In Files

defAuLT Ctrl+Shift+F

VisuAL	BAsiC	6 Ctrl+Shift+F

VisuAL	C#	2005 Ctrl+Shift+F

VisuAL	C++	2 Ctrl+Shift+F

VisuAL	C++	6 Ctrl+Shift+F

VisuAL	sTudio	6 [no shortcut]

WindoWs Alt, E, F, I

Menu Edit | Find and Replace | Find In Files

CoMMAnd Edit.FindinFiles

Versions 2005, 2008, 2010

Code vstipFind0005

A88 AX.47 Customize the Files to Search with Find In Files

In the Find In Files dialog box (Ctrl+Shift+F), choose any option except Current Document and
All Open Documents:

The Look At These File Types combo box is enabled under Find Options:

Now you can choose from the predetermined list of file types, or you can include your own
(semicolon delimited) list:

You can also create a customized set of folders to search in by going back to the Look In area
and clicking the ellipsis:

 Appendix B Additional Tips A89

Now you have the Choose Search Folders dialog box, where you can completely customize
the folders to look in, and you can even create a custom name for the folder set by typing a
new name in the Folder Set area:

AX.48 How to Show and Hide Find Messages

WindoWs Alt,T, O

Menu Tools | Options | Environment | Find and Replace

Versions 2005, 2008, 2010

Code vstipFind0017

When working with the various find-tool windows, you sometimes get messages based on
what you are doing. These range from informational messages to warning messages, as
shown in the following illustrations:

A90 AX.48 How to Show and Hide Find Messages

If you clear the Always Show This Message check box, the messages go away. But what if you
want the messages back or don’t want to wait for a message to pop up until you can turn the
messages off? No problem. Just go to Tools | Options | Environment | Find And Replace:

The Display Informational Messages and Display Warning Messages check boxes toggle,
showing these messages when you use a find operation. Informational messages really aren’t
very important, but you should consider carefully whether turning off warning messages is a
good idea.

 Appendix B Additional Tips A91

AX.49 How to Not Automatically Search for the Currently Selected Word

WindoWs Alt,T, O

Menu Tools | Options | Environment | Find and Replace

Versions 2005, 2008, 2010

Code vstipFind0018

Does it annoy you when your find operations automatically populate with the word you hap-
pen to have the cursor in?

You can simply go to Tools | Options | Environment | Find And Replace and clear the
Automatically Populate Find What With Text From The Editor check box:

AX.50 Setting Bookmarks

defAuLT Ctrl+K, Ctrl+K

VisuAL	BAsiC	6 Ctrl+K, Ctrl+K; Ctrl+K, T

VisuAL	C#	2005 Ctrl+K, Ctrl+K; Ctrl+B, Ctrl+T; Ctrl+B, T

VisuAL	C++	2 Ctrl+F2

VisuAL	C++	6 Ctrl+K, Ctrl+K; Ctrl+F2

VisuAL	sTudio	6 Ctrl+K, Ctrl+K

WindoWs Alt,E, K, T

Menu Edit | Bookmarks | Toggle Bookmark

CoMMAnd Edit.ToggleBookmark

Versions 2005, 2008, 2010

Code vstipTool0047

Bookmarks are a pretty cool feature that a lot of people don’t seem to know about.
Essentially, bookmarks provide a way to mark locations in your code. Unlike comment tokens
(“TODOs”), bookmarks are not stored with the source code and thus are seen only by you.

A92 AX.50 Setting Bookmarks

You have numerous ways to set a Bookmark. The simplest way is to use Ctrl+K, Ctrl+K to cre-
ate a single bookmark:

When you set a bookmark, it creates a glyph in the margin (see image above) and creates an
entry in the Bookmarks window:

The good news is that you don’t have to keep the default name that is given for the book-
mark. Just right-click the entry in the window, and choose Rename:

Then put in whatever you want for the name:

You can continue to use either the keyboard command or the menu option to create
bookmarks. Another great way to create bookmarks is to use the Bookmark All (bottom
right) button in the Quick Find dialog box (Ctrl+F):

 Appendix B Additional Tips A93

The Bookmark All button becomes available only if you choose Current Document or All
Open Documents from the Look In drop-down box.

AX.51 Organizing Bookmarks

Versions 2005, 2008, 2010

Code vstipTool0048

The Bookmarks window gives you some basic information about the bookmarks, and you
have the ability to rename them as well:

However, when you have a lot of bookmarks, it is probably a good idea to organize your
bookmarks. You can drag the bookmarks around to reorganize them in the list:

A94 AX.52 Navigating Bookmarks

Another thing you can do is create folders in the Bookmarks window (Ctrl+K, Ctrl+F):

Just give the folder(s) a name, and you have a great place to organize bookmarks:

Now you can just drag your bookmarks into the folder(s) you have created:

Naturally, if you have no need for a bookmark, you can simply press Del to delete the cur-
rently selected one, or you can go to Edit | Bookmarks | Clear Bookmarks to remove all your
bookmarks:

AX.52 Navigating Bookmarks

defAuLT Ctrl+K, Ctrl+P (previous bookmark); Ctrl+K, Ctrl+N (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P
(previous bookmark in folder); Ctrl+Shift+K, Ctrl+Shift+N (next bookmark in folder)

VisuAL	BAsiC	6 Ctrl+K, Ctrl+P (previous bookmark); Ctrl+K, P (previous bookmark); Ctrl+K, Ctrl+N (next book-
mark); Ctrl+K, N (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P (previous bookmark in folder);
Ctrl+Shift+K, Ctrl+Shift+N (next bookmark in folder)

VisuAL	C#	2005 Ctrl+K, Ctrl+P (previous bookmark); Ctrl+B, Ctrl+P (previous bookmark); Ctrl+B, P (previous book-
mark); Ctrl+K, Ctrl+N (next bookmark); Ctrl+B, Ctrl+N (next bookmark); Ctrl+B, N (next book-
mark); [no shortcut] (previous bookmark in folder); [no shortcut] (next bookmark in folder)

VisuAL	C++	2 Shift+F2 (previous bookmark); F2 (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P (previous book-
mark in folder); Ctrl+Shift+K, Ctrl+Shift+N (next bookmark in folder)

VisuAL	C++	6 Ctrl+K, Ctrl+P (previous bookmark); Shift+F2 (previous bookmark); Ctrl+K, Ctrl+N (next book-
mark); F2 (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P (previous bookmark in folder); Ctrl+Shift+K,
Ctrl+Shift+N (next bookmark in folder)

VisuAL	sTudio	6 Ctrl+K, Ctrl+P (previous bookmark); Ctrl+K, Ctrl+N (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P
(previous bookmark in folder); Ctrl+Shift+K, Ctrl+Shift+N (next bookmark in folder)

WindoWs Alt,E, K, [P (previous),B (next)]

Menu Edit | Bookmarks | [Previous, Next] Bookmark [In Folder, Document]

CoMMAnd Edit.[Previous, Next] Bookmark; Edit.[Previous, Next] Bookmark [In Folder, Document]

Versions 2005, 2008, 2010

Code vstipTool0049

 Appendix B Additional Tips A95

After you have created and organized your bookmarks, you want to navigate them. You can
go to Edit | Bookmarks to see several available options:

[Next,Previous] Bookmark In Document
This option allows you to restrict browsing to only those bookmarks in the current open
document, independently of how they are organized in the Bookmarks window.

So, even though you have lots of bookmarks in different folders within the Bookmarks win-
dow, this option moves only between the bookmarks in the current document, ignoring any
organization.

[Next,Previous] Bookmark In Folder
This option allows you to restrict browsing to only those bookmarks in the current folder in
the Bookmarks window, independent of how they are arranged in the source code.

Pretty much the opposite of the previous feature, this feature ignores how the bookmarks
are organized in the source code and moves only within the bookmarks in the current folder
within the Bookmarks window:

A96 AX.52 Navigating Bookmarks

When you reach the last Bookmark in the folder, it loops back around to the first bookmark
in the current folder:

[Next,Previous] Bookmark
This option allows you to navigate between bookmarks in the Bookmarks window. This fea-
ture is very similar to the [Previous, Next] Bookmark In Folder feature and moves sequentially
through bookmarks.

The difference comes when you reach the last bookmark in a folder. Instead of looping
back around to the first bookmark in the folder, this option continues to the next folder and
moves sequentially through those bookmarks as well (and so on):

 Appendix B Additional Tips A97

Additional	Tips	from	Chapter	6
AX.53 Turn On Line Numbers

WindoWs Alt,T,O

Menu Tools | Options | Text Editor | All Languages | General | Display

CoMMAnd Macros.Samples.Utilities.TurnOnLineNumbers; Macros.Samples.Utilities.TurnOffLineNumbers

Versions 2005, 2008, 2010

Code vstipEdit0025

As you can see in the following illustration, it’s great to have line numbers in your code:

Line numbers are not on by default. To turn on line numbers, just go to Tools | Options | Text
Editor | General | Display and select the Line Numbers check box:

A98 AX.54 Go to a Line Number

AX.54 Go to a Line Number

defAuLT Ctrl+G

VisuAL	BAsiC	6 [no shortcut]

VisuAL	C#	2005 Ctrl+G

VisuAL	C++	2 Ctrl+G

VisuAL	C++	6 Ctrl+G

VisuAL	sTudio	6 Ctrl+G

WindoWs Alt,E,G

Menu Edit | Go To

CoMMAnd Edit.GoTo

Versions 2005, 2008, 2010, 2010 SP1

Code vstipEdit0026

You have three main ways you can go to any line number in your code.

First, you can go to any line number by simply pressing Ctrl+G to see the following dialog
box. Just type in your desired line number, and click OK. The cursor moves to the line number
you typed:

Second, you can double-click in the status bar area that shows your current location (lower-
right part of your screen) to get the “Go To Line” dialog box:

Third, you can use the Find Combo box to quickly go to a line number. This technique does
not work with a default installation of Visual Studio 2010 but was fixed with Service Pack 1. It
requires two steps:

	 1.	 Press Ctrl+D to put your cursor into the Find Combo box:

	 2.	 Type in any line number, and press Ctrl+G to go to that line number:

 Appendix B Additional Tips A99

Note In Visual Studio 2010, you might have to press the escape key (Esc) to get out of the Find
Combo box and back to your code.

AX.55 Comment and Uncomment Code

defAuLT Ctrl+K, Ctrl+C (comment); Ctrl+K, Ctrl+U (uncomment)

VisuAL	BAsiC	6 Ctrl+K, Ctrl+C (comment); Ctrl+K, Ctrl+U (uncomment)

VisuAL	C#	2005 Ctrl+K, Ctrl+C (comment); Ctrl+E, Ctrl+C (comment); Ctrl+E, C (comment);
Ctrl+E, Ctrl+U (uncomment); Ctrl+E, U (uncomment); Ctrl+K, Ctrl+U (uncomment)

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+K, Ctrl+C (comment); Ctrl+K, Ctrl+U (uncomment)

VisuAL	sTudio	6 Ctrl+K, Ctrl+C (comment); Ctrl+K, Ctrl+U (uncomment)

WindoWs Alt,E, V, M; Alt,E, V, E;

Menu Edit | Advanced | Comment Selection; Edit | Advanced | Uncomment Selection

CoMMAnd Edit.CommentSelection; Edit.UncommentSelection

Versions 2005, 2008, 2010

Code vstipEdit0047

Sometimes it’s the simple things we forget about. So I present to you the classic Comment
and Uncomment selection. Naturally, you have the Comment and Uncomment buttons,
shown in the following illustration:

And, of course, you have the menu items:

But it’s the keyboard shortcuts that are really important. These, predictably, comment or un-
comment lines of code for you. So let’s say you have some code you want commented out.
Just select it, as shown in the following illustration:

Then press Ctrl+K, Ctrl+C:

A100 AX.56 Select the Current Word

OK, great, but what if you don’t want to use the mouse? No problem. Just hold Alt+Shift+[Up
or Down Arrow] to do a vertical selection. You don’t have to select the entire line to com-
ment or uncomment it.

Note In Visual Studio 2005 and Visual Studio 2008, you have to go right or left one character
before you can go up or down for vertical selection.

Then press Ctrl+K, Ctrl+U (in this example):

And there you go. You now have Comment and Uncomment actions anytime you want them.

AX.56 Select the Current Word

defAuLT Ctrl+W

VisuAL	BAsiC	6 Ctrl+Shift+W

VisuAL	C#	2005 Ctrl+Shift+W

VisuAL	C++	2 Ctrl+W

VisuAL	C++	6 Ctrl+W

VisuAL	sTudio	6 Ctrl+W

WindoWs [no shortcut]

CoMMAnd Edit.SelectCurrentWord

Versions 2005, 2008, 2010

Code vstipEdit0039

You can easily select the current word in Visual Studio by putting your cursor in the word:

And then just press Ctrl+W:

 Appendix B Additional Tips A101

AX.57 Delete Through the Beginning or End of a Word

defAuLT Ctrl+Del (delete to end); Ctrl+Backspace (delete to start)

VisuAL	BAsiC	6 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

VisuAL	C#	2005 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

VisuAL	C++	2 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

VisuAL	C++	6 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

VisuAL	sTudio	6 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

WindoWs [no shortcut]

CoMMAnd Edit.WordDeleteToEnd; Edit.WordDeleteToStart

Versions 2005, 2008, 2010

Code vstipEdit0040

You can delete from the current cursor position through the beginning or end of a word. Let
me Illustrate with a simple example. Let’s say you want to change the word “public”:

Given the current cursor position, you could delete to the end of the word by pressing
Ctrl+Del:

Then you could type the new word:

This is a somewhat contrived example, but you get the idea. Additionally, Ctrl+Backspace de-
letes from the current cursor location through the beginning of a word.

AX.58 Click and Drag Text to a New Location

CoMMAnd OtherContextMenus.DragandDrop.MoveHere

Versions 2005, 2008, 2010

Code vstipEdit0041

Often you will find yourself with the need to move text around in the Editor. Text can easily
be moved around by simply selecting it and dragging it to a new location. Start with some-
thing you want to move, like a method:

A102 AX.58 Click and Drag Text to a New Location

In this case, you might want to collapse the code to make it easier to select and move, as
shown in the following illustration:

Now just select the text, and then click and drag (left mouse button) to move the cursor to
the destination:

Release the mouse button to finish the move to the new location:

 Appendix B Additional Tips A103

This technique can also be used to move text from one file to another. Just select the text,
and then click and drag your mouse pointer over the tab for the new file:

Even though you get the “can’t drop” indicator, it switches to the new file. Just keep holding
the mouse button down, and move the cursor to the new location:

Then release and you are all set.

A104 AX.59 Make Selection Uppercase or Lowercase

AX.59 Make Selection Uppercase or Lowercase

defAuLT Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

VisuAL	BAsiC	6 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

VisuAL	C#	2005 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

VisuAL	C++	2 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

VisuAL	C++	6 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

VisuAL	sTudio	6 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

WindoWs Alt, E, V, U (uppercase); Alt, E, V, L (lowercase)

Menu Edit | Advanced | Make Uppercase; Edit | Advanced | Make Lowercase

CoMMAnd Edit.MakeUppercase; Edit.MakeLowercase

Versions 2005, 2008, 2010

Code vstipEdit0044

You can easily change the case of any text:

Just select the as much of the word you want to change case for, and press Ctrl+Shift+U to
make the selected characters all uppercase:

Or if you prefer, you can always make all the selected characters lowercase by pressing
Ctrl+U:

Again, you don’t have to select the whole word; you can select only the characters you want
to change.

AX.60 Brace Matching Rectangle

WindoWs Alt,T, O

Menu Tools | Options | Fonts and Colors | Display Items

Versions 2005, 2008, 2010

Code vstipEdit0050

The default colors can be a pain sometimes, especially when it comes to certain colors. One
of these, for me, is the Brace Matching Rectangle. The default colors are light grey:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Appendix B Additional Tips A105

To change the color, first go to Tools | Options | Fonts and Colors | Display Items and choose
Brace Matching (Rectangle), as shown in the following illustration:

Now choose your new color (Cyan in this example):

A Note About VB
Visual Basic treats this a little differently. When you first close braces, it gives you the Brace
Matching Rectangle color.

After the braces are in place, if you click next to them, it uses the highlighted reference
colors.

AX.61 Automatic Delimiter Highlighting

WindoWs Alt,T, O

Menu Tools | Options | Fonts and Colors | Display Items

Versions 2005, 2008, 2010

Code vstipEdit0071

You have probably seen automatic delimiter highlighting in action before. It shows up when
you close parentheses, curly brackets, and other similar delimiters.

A106 AX.61 Automatic Delimiter Highlighting

C#

VB

Changing Colors
You can modify the colors to suit your need by going to Tools | Options | Environment | Fonts
and Colors and selecting Brace Matching (Rectangle):

Let’s change the background to lime green and click OK:

Turning It Off
If you don’t like this feature, you can go to Tools | Options | Text Editor | General and clear
the Automatic Delimiter Highlighting check box, as shown in the following illustration:

 Appendix B Additional Tips A107

AX.62 Move or Select to the Top or Bottom of the Current View in the Editor

defAuLT Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

VisuAL	BAsiC	6 [no shortcut]

VisuAL	C#	2005 Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

VisuAL	C++	2 Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

VisuAL	C++	6 Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

VisuAL	sTudio	6 Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

WindoWs [no shortcut]

CoMMAnd Edit.ViewTop; Window.ViewBottom;Edit.ViewTopExtend;Edit.ViewBottomExtend

Versions 2005, 2008, 2010

Code vstipEdit0056

This tip comes in handy when you want to travel from one end of your screen to the other.
For example, when you are working with documents, you might find yourself at the bottom
of the screen and want to get to the top:

Just press Ctrl+PgUp, and you are taken to the top of the screen as close to the current col-
umn position as possible:

Using Ctrl+PgDn takes you to the bottom of the screen. You can also use Ctrl+Shift+Pg[Up or
Dn] to select everything from the current cursor position to the top or bottom of the screen.

A108 AX.63 Format the Current Document or Selection

AX.63 Format the Current Document or Selection

defAuLT Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection)

VisuAL	BAsiC	6 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection)

VisuAL	C#	2005 Ctrl+K, Ctrl+D (document); Ctrl+E, Ctrl+D (document); Ctrl+E, D (document);
Ctrl+K, Ctrl+F (selection); Ctrl+E, Ctrl+F (selection); Ctrl+E, F (selection)

VisuAL	C++	2 [no shortcut] (document); Ctrl+Shift+F (selection); Ctrl+Alt+I (selection)

VisuAL	C++	6 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection); Alt+F8 (selection)

VisuAL	sTudio	6 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection); Alt+F8 (selection)

WindoWs Alt,E, V, A (document); Alt,E, V, F (selection)

Menu Edit | Advanced | Format Document; Edit | Advanced | Format Selection

CoMMAnd Edit.FormatDocument; Edit.FormatSelection

Versions 2005, 2008, 2010

Code vstipEdit0057

Let’s say you have some code that isn’t formatted properly.

Now you want it to look good. Just select the code, and then go to Edit | Advanced | Format
Selection to get the result shown in the following illustration:

If you want to fix the formatting for the entire document you are currently working in, just go
to Edit | Advanced | Format Document. This operation formats everything in the current open
document for you, without your having to select specific areas.

 Appendix B Additional Tips A109

AX.64 Use F6 to Jump Between Split Windows

defAuLT F6; Shift+F6

VisuAL	BAsiC	6 F6; Shift+F6

VisuAL	C#	2005 [no shortcut]

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 F6; Shift+F6

VisuAL	sTudio	6 F6; Shift+F6

WindoWs [no shortcut]

CoMMAnd Window.NextSplitPane; Window.PreviousSplitPane

Versions 2005, 2008, 2010

Code vstipEnv0005

If you have split windows (Window | Split), you can easily move the cursor between the panes
without using your mouse: Just press F6:

AX.65 Turn Off Single-Click URL Navigation in the Editor

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | All Languages | General | Display

Versions 2005, 2008, 2010

Code vstipEdit0060

In most languages, by default, single-click URL navigation is turned on, which allows you to
use Ctrl+Click to follow a link from the Editor:

A110 AX.66 Hide the Vertical and/or Horizontal Scroll Bars

This feature can be turned off by going to Tools | Options | Text Editor | All Languages [or
your language] | General | Display and clearing the Enable Single-Click URL Navigation check
box:

AX.66 Hide the Vertical and/or Horizontal Scroll Bars

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | General | Display

Versions 2005, 2008, 2010

Code vstipEdit0058

This isn’t a commonly used option but can be useful in certain situations. If you want more
real estate on your screen, you can go to Tools | Options | Text Editor | General | Display and
clear the Vertical Scroll Bar and/or Horizontal Scroll Bar check boxes to make the scroll bars
go away.

Before:

 Appendix B Additional Tips A111

After:

Of course, you no longer have your scroll bars, which can be somewhat annoying.

AX.67 How to Convert Tabs to Spaces and Vice Versa

defAuLT [no shortcut]

VisuAL	BAsiC	6 [no shortcut]

VisuAL	C#	2005 [no shortcut]

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 [no shortcut]

VisuAL	sTudio	6 Ctrl+Q (tabify); Ctrl+Shift+Q (untabify)

WindoWs Alt,E, V, T (tabify); Alt,E, V, B (untabify)

Menu Edit | Advanced | Tabify Selected Lines; Edit | Advanced | Untabify Selected Lines

CoMMAnd Edit.TabifySelectedLines; Edit.UntabifySelectedLines; Edit.ConvertSpacesToTabs;
Edit.ConvertTabsToSpaces

Versions 2008, 2010

Code vstipEdit0028

Some people prefer spaces; others prefer tabs. You can have it any way you want it with this
next item. You can convert spaces to tabs and convert tabs to spaces on your selected lines.
You can do this in a couple of ways, and each has different results.

A112 AX.67 How to Convert Tabs to Spaces and Vice Versa

Tabify/Untabify
If all you want to do is convert leading spaces to tabs (or vice versa), you would use the
Tabify/Untabify commands. First, pick a line with some leading spaces, as shown in the fol-
lowing illustration.

Note You don’t have to select the entire line for this to work; as long as any part of the line is
selected, it performs the action.

Now go to Edit | Advanced | Tabify Selected Lines.

You should get the leading spaces converted to tabs, as shown in the following illustration:

To change leading tabs to spaces, you would use the Untabify Selected Lines command.

ConvertSpacesToTabs/ConvertTabsToSpaces
OK, so what if you want to convert all spaces to tabs? Well, you have to use commands
that have no shortcut or menu items. The commands you are interested in are Edit.
ConvertTabsToSpaces and Edit.ConvertSpacesToTabs.

The following illustration shows what ConvertSpacesToTabs does to our example.

Note For these commands, you have to select everywhere you want to convert, because the
command does not automatically convert the entire line.

As you can see, almost all spaces are converted to tabs. Because spaces are converted to tabs
in increments of 4 (default), if you have, say, 6 spaces, it results in a tab and 2 spaces left over.
That is why you see some leftover spaces in the example. If you select these same lines and
run ConvertTabsToSpaces, it inserts spaces instead of tabs.

 Appendix B Additional Tips A113

AX.68 Delete Horizontal White Space

defAuLT Ctrl+K, Ctrl+\

VisuAL	BAsiC	6 Ctrl+K, Ctrl+\

VisuAL	C#	2005 Ctrl+K, Ctrl+\; Ctrl+E, Ctrl+\; Ctrl+E, \

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+K, Ctrl+\

VisuAL	sTudio	6 Ctrl+K, Ctrl+\

WindoWs Alt,E, V, H

Menu Edit | Advanced | Delete Horizontal White Space

CoMMAnd Edit.DeleteHorizontalWhiteSpace

Versions 2005, 2008, 2010

Code vstipEdit0037

Want to get rid of some extra spaces? First find a line that has some extra white space that
you want to get rid of:

Put your cursor in the extra white space:

Go to Edit | Advanced | Delete Horizontal White Space or press Ctrl+K, Ctrl+\, and the extra
space is gone:

Interestingly, this also works between items as well. Just find some space and put your cursor
in it:

Then get rid of the extra space:

Note One space always remains when you use this feature between items.

A114 AX.69 Expanding Your Code with Outlining

AX.69 Expanding Your Code with Outlining

defAuLT Ctrl+M, Ctrl+M

VisuAL	BAsiC	6 Ctrl+M, Ctrl+M

VisuAL	C#	2005 Ctrl+M, Ctrl+M; Ctrl+M, M

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+M, Ctrl+M

VisuAL	sTudio	6 [no shortcut]

WindoWs Alt,E, O, T

Menu Edit | Outlining | Toggle Outlining Expansion

CoMMAnd Edit.ToggleOutliningExpansion

Versions 2005, 2008, 2010

Code vstipEdit0030

By default, outlining is enabled in Visual Studio. Suppose you encounter a collapsed area of
code, as shown in the following illustration, and you want to see all the code that is collapsed
in that area:

You have three ways to expand it:

●● Click the plus sign to expand the area.

●● Click anywhere in the area to be expanded, and press Ctrl+M, Ctrl+M.

●● Click anywhere in the area to be expanded, and go to Edit | Outlining | Toggle
Outlining Expansion on the menu bar.

 Appendix B Additional Tips A115

AX.70 Collapsing or Expanding All Your Code with Outlining

defAuLT Ctrl+M, Ctrl+L

VisuAL	BAsiC	6 Ctrl+M, Ctrl+L

VisuAL	C#	2005 Ctrl+M, Ctrl+L; Ctrl+M, L

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+M, Ctrl+L

VisuAL	sTudio	6 [no shortcut]

WindoWs Alt,E, O, L

Menu Edit | Outlining | Toggle All Outlining

CoMMAnd Edit.ToggleAllOutlining

Versions 2005, 2008, 2010

Code vstipEdit0031

You can easily collapse or expand all your code with outlining. For example, suppose you
have code that is expanded, as shown in the following illustration:

You want it all collapsed, so you have two options:

●● Press Ctrl+M, Ctrl+L.

●● Go to Edit | Outlining | Toggle All Outlining on the menu bar.

A116 AX.71 Turn Off or Turn On Outlining

The result is collapsed code:

Just repeat one of the steps to reverse the process, and all your code is expanded again. This
is particularly useful if you are using a feature (certain Find operations) that can’t look inside
collapsed code.

AX.71 Turn Off or Turn On Outlining

defAuLT Ctrl+M, Ctrl+P (stop outlining)

VisuAL	BAsiC	6 Ctrl+M, Ctrl+P (stop outlining)

VisuAL	C#	2005 Ctrl+M, Ctrl+P (stop outlining); Ctrl+M, P (stop outlining)

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+M, Ctrl+P (stop outlining)

VisuAL	sTudio	6 [no shortcut]

WindoWs Alt,E, O, P (stop outlining); Alt, E, O, U (start outlining)

Menu Edit | Outlining | Stop Outlining; Edit | Outlining | Start Automatic Outlining (Not
Available in C++ 2005 and 2008)

CoMMAnd Edit.StopOutlining; Edit.OutliningStartAutomaticOutlining

Versions 2005, 2008, 2010

Code vstipEdit0033

If you don’t like the outlining feature in Visual Studio, you can turn it off one of two ways:

●● Press Ctrl+M, Ctrl+P on your keyboard.

●● Go to Edit | Outlining | Stop Outlining on your menu bar.

To turn outlining back on, go to Edit | Outlining | Start Automatic Outlining on your menu
bar. Unfortunately, no keyboard shortcut is available for turning outlining back on.

Note Start Automatic Outlining is not available in C++ 2005/2008. To get it back in C++
2005/2008, just close and reopen the file you are working on.

 Appendix B Additional Tips A117

AX.72 Understanding Virtual Space

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | All Languages | General | Settings

Versions 2005, 2008, 2010

Code vstipEdit0023

Virtual space is a little difficult to understand if you aren’t familiar with older editors. We
used to have (and some people still have) editors that treat everywhere on a line as editable
space.

Let me explain: Without virtual space, the line ends where the code ends.

If I move my cursor to the end of any line and press my Right Arrow key, it goes to the next
line. This is the way editors have been for a while now, and this isn’t really new information.

However, this wasn’t always the case. There was a time when you could type anywhere you
wanted, anytime you wanted, without restriction. Some text editors still allow this today.
Virtual space allows you to go back to the old style of editing, which is preferred by some.
Go to Tools | Options | Text Editor | All Languages | General | Settings, and select the Enable
Virtual Space check box to turn this feature on:

Note Enable Virtual Space and Word Wrap are mutually exclusive options, so you have to
choose one or the other.

A118 AX.73 Document Outline: WPF and Silverlight Projects

After you select the Enable Virtual Space option, you can type anywhere on a line, regardless
of whether or not the code ends:

AX.73 Document Outline: WPF and Silverlight Projects

defAuLT Ctrl+Alt+T

VisuAL	BAsiC	6 Ctrl+Alt+T

VisuAL	C#	2005 Ctrl+Alt+T; Ctrl+W, Ctrl+U; Ctrl+W, U

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+Alt+D

VisuAL	sTudio	6 Ctrl+Alt+T

WindoWs Alt,V, E, D

Menu View | Other Windows | Document Outline

CoMMAnd View.DocumentOutline

Versions 2010

LAnguAges C#, VB

Code vstipTool0117

When working with WPF and XAML, it can sometimes get tricky finding items. This is
where the Document Outline feature comes in handy. In this example, I’ve created a WPF
Application and put a few controls on it. The following illustration shows what I get when I
pull up the Document Outline (Ctrl+Alt+T):

 Appendix B Additional Tips A119

You can also get to the Document Outline by clicking the Document Outline button located
in the lower-left corner of the screen by default:

Notice how it shows each control and the parent/child relationships. If the experience
stopped there, it would be OK, but it actually gets even better when you put your mouse
pointer over any item in the list, as shown in the following illustration:

Putting the mouse pointer over a parent shows a preview of the parent and all the children:

You can also get a preview from the outline presented at the lower part of the screen:

And you can dig into the details if needed:

A120 AX.73 Document Outline: WPF and Silverlight Projects

Also, when you click on any item in the Document Outline, it is selected in both XAML and
Design view:

To sum it up, the Document Outline can be used when working with WPF to do the
following:

●● View the logical structure of elements in your XAML.

●● View a thumbnail preview of an element in a pop-up window.

●● Navigate to specific elements, in Design view and in XAML view.

●● Put user input focus on deeply nested elements that might be hard to select on the de-
sign surface itself.

●● Locate controls that might be visually hidden by other controls.

 Appendix B Additional Tips A121

AX.74 Document Outline: Windows Form Projects

defAuLT Ctrl+Alt+T

VisuAL	BAsiC	6 Ctrl+Alt+T

VisuAL	C#	2005 Ctrl+Alt+T; Ctrl+W, Ctrl+U; Ctrl+W, U

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+Alt+D

VisuAL	sTudio	6 Ctrl+Alt+T

WindoWs Alt,V, E, D

Menu View | Other Windows | Document Outline

CoMMAnd View.DocumentOutline

Versions 2005, 2008, 2010

Code vstipTool0118

The Document Outline is used to get a bird’s eye view of items in your project. Let’s look at
using it with Windows Form projects.

For this example, I’ve created a new Windows Forms Application and put a few sample con-
trols on it. The following illustration shows what the Document Outline (Ctrl+Alt+T) looks like:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A122 AX.74 Document Outline: Windows Form Projects

Selection
When you click any item in the list, that item is selected on the form in Design view:

Context Commands
Additionally, you can access a variety of commands by right-clicking any item, including the
ability to rename the control from the Document Outline:

View Code
You can also press F7 with any item selected to view the code for it, but remember that the
Document Outline does not work in code view:

 Appendix B Additional Tips A123

Relocate Items
The ability to move items from one container to another is supported as well:

Toolbar Controls
The toolbar supports a variety of functions as described in the following sections.

Name display
You can select different name display styles:

A124 AX.75 Change the Tooltip Font Size

Expand/collapse
You can expand or collapse the entire outline:

Moving around
The toolbar even supports moving around within and between containers:

AX.75 Change the Tooltip Font Size

WindoWs Alt,T, O

Menu Tools | Options | Fonts and Colors | Show settings For

Versions 2005, 2008, 2010

Code vstipEdit0046

Ever want to change the size of your tooltip font? Here is what it looks like by default:

To change it, just go to Tools | Options | Fonts and Colors | Show Settings For. From there,
select Editor Tooltip from the drop-down list, as shown in the following illustration:

 Appendix B Additional Tips A125

Now that you have the Editor Tooltip settings, change the font to a bigger size and then click
OK. Now you should see a bigger font size on your tooltips.

AX.76 Change the Statement Completion Font Size

WindoWs Alt,T, O

Menu Tools | Options | Fonts and Colors

Versions 2005, 2008, 2010

Code vstipEdit0055

Are you like me and think that the statement completion font is annoyingly small and hard to
read?

Well, you can easily increase the font size by going to Tools | Options | Fonts And Colors |
Show Settings For | Statement Completion, as shown in the following illustration:

From this dialog box, just make the font any size you like. Click OK to exit the dialog box, and
now you should have statement completion in a size you can read:

A126 AX.77 Vertical Split View for Web Projects

AX.77 Vertical Split View for Web Projects

WindoWs Alt,T, O

Menu Tools | Options

CoMMAnd Tools.Options

Versions 2008, 2010

Code vstipEdit0081

The default way Split view handles panes is to tile them horizontally:

However, you can change this by going to Tools | Options | HTML Designer | General and se-
lecting Split Views Vertically. Now the Split view tiles the panes vertically:

 Appendix B Additional Tips A127

Note When you perform this action, you might have to close and reopen some files to see it
take effect.

AX.78 Open JScript Braces on a New Line

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | JScript | Formatting

CoMMAnd Tools.Options

Versions 2008, 2010

Code vstipEdit0087

By default, Visual Studio formats JScript functions and control blocks with the open brace on
the same line as the declaration:

Without getting into the big debate about whether this is good or bad, let’s assume you pre-
fer to have your braces inline vertically:

Go to Tools | Options | Text Editor | JScript | Formatting, and choose whether you want the
open brace on a new line for functions, control blocks, or both.

AX.79 Insert Spaces vs. Keep Tabs

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | [Language] | Tab

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0072

Some people like tabs in their code, and others are partial to spaces. You can specify what
you want by going to Tools | Options | Text Editor | [Language] | Tab:

A128 AX.79 Insert Spaces vs. Keep Tabs

Tab Size
Use this setting to specify the distance in spaces between tab stops. The default is four spac-
es. Every time you hit the Tab key, it advances the number of spaces specified.

Indent Size
Use this setting to specify the size in spaces of an automatic indentation. The default is four
spaces. Tab characters, space characters, or both are inserted according to the specified size.
When the editor automatically indents your code, it uses this setting to determine how much
space to use.

Insert Spaces
Indent operations insert only space characters, not Tab characters. For example, if the indent
size is set to 5, five space characters are inserted whenever you press the Tab key or click the
Increase Indent button on the formatting toolbar:

Keep Tabs
Indent operations insert Tab characters. Each Tab character comprises the number of spaces
specified in the Tab Size setting. If the indent size is not an even multiple of the Tab size,
space characters are added to make up the difference:

 Appendix B Additional Tips A129

AX.80 View in Browser

defAuLT Ctrl+Shift+W

VisuAL	BAsiC	6 Ctrl+Shift+W

VisuAL	C#	2005 [no shortcut]

VisuAL	C++	2 Ctrl+Shift+W

VisuAL	C++	6 Ctrl+Shift+W

VisuAL	sTudio	6 Ctrl+Shift+W

WindoWs Alt,F, B

Menu File | View in Browser

CoMMAnd File.ViewinBrowser

Versions 2005, 2008, 2010

Code vstipTool0119

You can quickly view your current page in your browser by pressing Ctrl+Shift+W. This auto-
matically opens up your default browser (see vstipEnv0057, “Using Additional Browsers for
Web Development,” page 96):

A130 AX.81 Detect When a File Is Changed Outside the Environment

AX.81 Detect When a File Is Changed Outside the Environment

WindoWs Alt,T, O

Menu Tools | Options Environment | Documents

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0073

If you go to Tools | Options | Environment | Documents, you can see two interesting options:

Detect When File Is Changed Outside The Environment
When this option is selected, a message immediately notifies you of changes to an open file
that have been made by an editor outside the IDE. The message enables you to reload the
file from storage:

Auto-Load Changes, If Saved
When you have the Detect When File Is Changed Outside The Environment options selected
and an open file in the IDE changes outside the IDE, a warning message is generated by de-
fault. However, if the Auto-Load Changes, If Saved option is selected, no warning appears
and the document is reloaded in the IDE to pick up the external changes.

As you can see, the default is to detect the changes but not auto-load them. This is generally
a good strategy because any changes you load from outside the editor should be reviewed,
to avoid erasing work you have already in the editor.

 Appendix B Additional Tips A131

AX.82 Turn Off the Selection Margin

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | General

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0034

For those who aren’t familiar with it, the selection margin is the area between line numbers
and the outline indicators. It is used to show code changes and to enable you to select an
entire line of code with one click. The following illustration shows the area in action:

If you don’t have use for the change tracking and line selection, you can easily turn this fea-
ture off by going to Tools | Options | Text Editor | General | Display and clearing the Selection
Margin check box:

Now the selection margin is gone:

An interesting side effect in Visual Studio 2005 and Visual Studio 2008 is that hiding the se-
lection margin also hides the outline area.

Before:

A132 AX.83 Reuse the Same Editor Window When Opening Files

After:

AX.83 Reuse the Same Editor Window When Opening Files

WindoWs Alt,T, O

Menu Tools | Options | Environment | Documents

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0027

Normally, when you open up a document (in this example “Program.cs”), it creates a new tab.

Before:

After:

You can reuse the same document window if you want by going to Tools | Options |
Environment | Documents and selecting the Reuse Current Document Window, If Saved
check box:

Now when you open a document, you see the following results.

 Appendix B Additional Tips A133

Before:

After:

The caveat here is that you must have a saved document for this to work. If the document
was not saved, a new document window would be created even with this option turned on.

AX.84 Sharing Snippets with Your Team

defAuLT Ctrl+K, Ctrl+B

VisuAL	BAsiC	6 Ctrl+K, Ctrl+B

VisuAL	C#	2005 Ctrl+K, Ctrl+B

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+K, Ctrl+B

VisuAL	sTudio	6 Ctrl+K, Ctrl+B

WindoWs Alt,T, T

Menu Tools | Code Snippets Manager

CoMMAnd Tools.CodeSnippetsManager

Versions 2005, 2008, 2010

Code vstipTool0075

Sometimes you might want to share special snippets with your team for others to use. It’s
easy to do, and it’s a great way to ensure common code constructs remain the same.

First create a network directory that all the team members can read from, and put all your
special .snippet files there. If you don’t have experience working with snippet files, take a look
at vstipTool0016, “Create New Code Snippets from Existing Ones,” page 271.

Next have each team member open the Code Snippets Manager (Ctrl+K, Ctrl+B):

A134 AX.84 Sharing Snippets with Your Team

Ask your team members to click Add and select the network directory you created earlier,
and everyone can use the shared snippets.

If you don’t want to have everyone doing this manually, you can do these steps yourself and
export just your code snippet locations, as shown in the following illustration:

 Appendix B Additional Tips A135

Then have everyone import the .vssettings file you created to get the shared location. For
more information about exporting, see vstipEnv0021, “Exporting Your Environment Settings,”
on page 6.

AX.85 Swap the Current Anchor Position

defAuLT Ctrl+K, Ctrl+A

VisuAL	BAsiC	6 Ctrl+K, Ctrl+A

VisuAL	C#	2005 Ctrl+K, Ctrl+A; Ctrl+E, Ctrl+A; Ctrl+E, A

VisuAL	C++	2 Ctrl+Shift+X

VisuAL	C++	6 Ctrl+K, Ctrl+A

VisuAL	sTudio	6 Ctrl+K, Ctrl+A

WindoWs [no shortcut]

CoMMAnd Edit.SwapAnchor

Versions 2005, 2008, 2010

Code vstipEdit0068

When you select text, the “anchor” is the cursor location at the end of the selection. By de-
fault, the anchor is to the right of the selection. However, you can use Ctrl+K, Ctrl+A to swap
the anchor from the right side to the left side, as shown in the following illustrations:

OK, so why would you want to do this? Well, those who use Emacs like this feature quite a
bit, and it has been around a long, long time. One great benefit comes when you need to
expand a selection from left to right. By swapping the anchor, you can hold down your Shift
key and use your Left Arrow key to expand the selection:

AX.86 Guidelines: A Hidden Feature for the Visual Studio Editor

Versions 2005, 2008, 2010

Code vstipEdit0015

Guidelines are used when you want visible column indicators to help you keep things lined
up in the editor:

A136 AX.86 Guidelines: A Hidden Feature for the Visual Studio Editor

Visual Studio 2010
This feature has been removed in Visual Studio 2010. With that said, if you are using Visual
Studio 2010, an extension, created by Paul Harrington, is available at http://visualstudiogal-
lery.msdn.microsoft.com/en-us/0fbf2878-e678-4577-9fdb-9030389b338c.

Visual Studio 2005/2008
To add the guidelines to the user interface, you need to follow these steps:

	 1.	 Shut down Visual Studio.

	 2.	 Go to [HKEY_CURRENT_USER]\Software\Microsoft\VisualStudio\<version>\Text Editor in
the registry (regedit.exe).

Warning Editing the registry can cause serious problems if you don’t know what you are
doing, so edit it at your own risk.

	 3.	 Create a string value called Guides:

http://visualstudiogallery.msdn.microsoft.com/en-us/0fbf2878-e678-4577-9fdb-9030389b338c
http://visualstudiogallery.msdn.microsoft.com/en-us/0fbf2878-e678-4577-9fdb-9030389b338c

 Appendix B Additional Tips A137

	 4.	 Set Guides to the following:

RGB(x,y,z) n1,…,n13, where x,y,z are the RGB color values representing the color you
want for the guides; and n is the column number position at which you want the guides
to appear.

You can have at most 13 guidelines. For example, RGB(255,0,0) 5, 80 places a red guide-
line at column numbers 5 and 80:

	 5.	 Open Visual Studio, and open a file in the Editor:

Removing guidelines
To delete the guidelines, just delete the Guides value you created above and then close and
reopen Visual Studio.

A138 AX.87 Insert File as Text

AX.87 Insert File as Text

WindoWs Alt,E, X

Menu Edit | Insert File As Text

CoMMAnd Edit.InsertFileAsText

Versions 2005, 2008, 2010

Code vstipEdit0021

Another classic item that tends to get overlooked in the wake of snippets and T4 templates is
the Insert File As Text feature. Let’s say you have a chunk of code in a file, and you want it in
another file too. Just go to Edit | Insert File As Text to see the following dialog box:

Choose your file, and it inserts the contents of that file as though you had just typed the text
in yourself.

Note When performing this action, you might need to change the file type to look for.

 Appendix B Additional Tips A139

AX.88 Indenting: Smart vs. Block vs. None

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | [Language] | Tabs | Indenting

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0049

Indenting is something we all deal with in the Editor all the time. In this tip, I reveal what each
of the available indenting choices does for you. If you go to Tools | Options | Text Editor |
[Language] | Tabs | Indenting, you can see the options shown in the following illustration:

Smart
Let’s begin with the option that most people have by default: Smart indenting. Create a new
method, and press Enter after the curly brace:

Notice that Smart indenting pays attention to where it is and automatically indents after
the opening curly brace. This is the “smart” part of the indenting because it knew that you
pressed Enter after an opening curly brace and assumed you wanted to indent.

Block
Now let’s look at Block indenting:

In this case, the cursor maintains its current indent level and doesn’t “smart” indent based on
context. Block indenting is the old indenting style that is preferred by people who want con-
trol over when indenting happens.

A140 AX.89 Change CSS Formatting

None
Of course, if you really want total control, you can choose None in the Options dialog box
and turn off any indenting at all:

The cursor returns to column 1 every time you press Enter.

AX.89 Change CSS Formatting

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | CSS | Formatting

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0094

People are very picky about how their code is styled. Fortunately, Visual Studio offers you the
ability to format your CSS code the way you like it. Just go to Tools | Options | Text Editor |
CSS | Formatting:

Note In Visual Studio 2005, the menu path is Tools | Options | Text Editor | CSS | Format.

 Appendix B Additional Tips A141

Style
You have three style options available:

Expanded (Default)
Provides the most readability by adding extra space in the styles. The selector and initial
brace appear on their own lines, declarations are indented on subsequent lines, and the clos-
ing brace is aligned with the matching opening brace:

Semi-expanded
Provides a trade-off between readability and compactness by reducing space. The selector
and initial brace ({) are positioned on the same line, declarations are indented on subsequent
lines, and the closing brace (}) is aligned with the matching opening brace:

Compact rules
Provides maximum amount of reduced space. The selector and declaration are positioned on
the same line:

Capitalization
This option is pretty straightforward and provides casing instructions for the properties.

Lowercase (Default)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A142 AX.90 How to Turn Off Automatic IntelliSense

Uppercase

As entered
Leaves the casing alone and doesn’t modify the user input.

AX.90 How to Turn Off Automatic IntelliSense

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | All Languages [or specific language] | General | Statement
completion

Versions 2005, 2008, 2010

Code vstipEdit0054

So IntelliSense might not be for everyone. It can sometimes annoy people when it automati-
cally pops up. You can disable automatic IntelliSense and still have it come up only when you
want it to.

Go to Tools | Options | Text Editor | All Languages [or specific language] | General | Statement
Completion, and clear the Auto List Members check box:

Now anytime you want IntelliSense, just press Ctrl+J to bring it up.

AX.91 Disable HTML, CSS, or JScript IntelliSense

WindoWs Alt,T, O

Menu Tools | Options | Text Editor | HTML | General

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0085

Personally, I love IntelliSense everywhere I write code.

 Appendix B Additional Tips A143

However, some people don’t like it in some places, and one place I find where that is espe-
cially true is in the HTML editor. You can turn off IntelliSense by going to Tools | Options |
Text Editor | HTML | General and clearing the Auto List Members check box:

This action disables IntelliSense for the HTML text editor. Additionally, if you want to do the
same for CSS or Jscript, just go to Tools | Options | Text Editor | [CSS or JScript] | General and
perform the same step.

AX.92 Design and XAML on Different Document Tabs

Versions 2010

Code vstipTool0009

Now that you can free your document windows and put them on multiple monitors, many
people are asking how to do this with code-behind files. Assume you have the following
XAML document open:

But you want the Design view in one window and the XAML view in another so that you can
work on each document in a separate monitor. Well, if you click and drag the document tab,
both the design and the XAML go together:

A144 AX.92 Design and XAML on Different Document Tabs

So what do you do? As it turns out, the solution is pretty easy. With the design view in one
document, go to Solution Explorer, right-click the XAML file, and choose Open With:

Now, in the Open With dialog box, select Source Code (Text) Editor and click OK:

 Appendix B Additional Tips A145

You now have two XAML windows, one for your designer and one for the XAML:

Now you can put them on two different monitors or whatever you feel like doing.

AX.93 Using Generate from Usage

WindoWs Alt,E, I, G, T

Menu Edit | IntelliSense | Generate | New Type

CoMMAnd Edit.GenerateNewType; EditorContextMenus.CodeWindow.Generate.GenerateNewType

Versions 2010

Code vstipEdit0011

I’m a big fan of Test Driven Development (TDD), so I absolutely love this tip because it is a big
step toward enabling TDD activities in Visual Studio. The idea behind it is simple; it allows you
to use classes and members before you define them. This was created so that you can write
your tests and use classes/members that haven’t been created yet per the tenets of TDD
(“red, green, refactor”). The C# and VB implementations are slightly different, so let’s take a
look at those differences.

VB
Start by using a class that you haven’t created yet:

A146 AX.93 Using Generate from Usage

Obviously, you will get an error:

But wait. When you click the Error Correction Options, you get something new:

Click Generate ‘Class Dollar’, and you get a new file called Dollar.vb with a class stub inside:

The error is gone, and you are ready to start using the class. You can repeat this process for
new members that you create for the new class, as you use them.

 Appendix B Additional Tips A147

C#
Start by using a class that doesn’t exist:

Here you have a couple of options. You can right-click and choose Generate | Class, or you
can click the smart tag and choose Generate class for ‘Dollar’. They both do the same thing,
and you can see both options in the following illustrations:

You get a new file called Dollar.cs with a class stub inside:

The error is gone, and you are ready to start using the class. You can repeat this process for
new members that you create for the new class, as you use them.

When you get the hang of this and actually start using this feature for TDD activities, you
would not use the examples I provided but would instead choose the Generate New Type
option. The dialog box is the same for VB and C#.

A148 AX.94 IntelliSense Suggestion Mode

Notice that you have the ability to set Access, Kind, and—most importantly—Location. It’s
the Location option that TDD folks will use to put the classes into the proper project outside
of their test projects.

AX.94 IntelliSense Suggestion Mode

defAuLT Ctrl+Alt+Spacebar

WindoWs Alt,E, I, T

Menu Edit | IntelliSense | Toggle Completion Mode

CoMMAnd Edit.ToggleCompletionMode

Versions 2008, 2010

Code vstipEdit0012

IntelliSense comes in two modes: Completion and Suggestion. You are already familiar with
IntelliSense completion mode; it’s the traditional mode that we have all used for years. But
if you are into Test Driven Development (TDD), completion mode can be very annoying at
times.

TDD developers often use classes and members before they exist. It’s not fun when you go
to type the name of something that doesn’t exist and you get IntelliSense. Especially because
you sometimes accidentally get an option you didn’t want:

 Appendix B Additional Tips A149

The solution is suggestion mode. Just press Ctrl+Alt+Spacebar to go into this mode:

Now you get the best of both worlds: You can type in a name that doesn’t exist and have
quick access to the completion mode options as well. The risk of getting an option you don’t
want is reduced.

AX.95 Turn Off Automatic Symbol Renaming When You Rename a File in
Solution Explorer

WindoWs Alt,T, O

Menu Tools | Options | Projects And Solutions | General

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0011

When you start to rename a class file in Solution Explorer, you receive the following prompt:

When you click Yes, both the class name in all your code and the file are renamed:

A150 AX.96 Mark Methods and Types as Hidden from IntelliSense and the Object Browser

If you find yourself doing this a lot, you can get rid of the prompt to rename by going to
Tools | Options | Projects And Solutions | General and clearing the Prompt For Symbolic
Renaming When Renaming Files check box.

From now on, when you do your renaming, the prompt does not appear and everything is
renamed automatically.

AX.96 Mark Methods and Types as Hidden from IntelliSense and the Object
Browser

Versions 2005, 2008, 2010

Code vstipTool0088

When you make assemblies for others to use, you might sometimes want to have hidden meth-
ods, properties, and other elements. To hide an item, you use the System.ComponentModel
namespace.

C#

VB

 Appendix B Additional Tips A151

Hiding
To hide a property or method, you use the EditorBrowsable(EditorBrowsableState.Never)
attribute.

C#

VB

Use
Testing this is a little tricky. You have to use the assembly externally because hiding is meant
to hinder external users, not the creator of the assembly. Just making a reference to another
project isn’t enough. You actually have to go to the Browse tab and set a reference to the
external assembly that is created:

A152 AX.96 Mark Methods and Types as Hidden from IntelliSense and the Object Browser

Result
When you test it, the hidden items should not be visible.

C#

VB

 Appendix B Additional Tips A153

Additional	Tips	from	Chapter	7
AX.97 Set or Remove a Breakpoint

defAuLT F9

VisuAL	BAsiC	6 F9

VisuAL	C#	2005 F9

VisuAL	C++	2 F9; Ctrl+Shift+F9

VisuAL	C++	6 F9

VisuAL	sTudio	6 F9

WindoWs Alt,D, G

Menu Debug | Toggle Breakpoint

CoMMAnd Debug.ToggleBreakpoint

Versions 2005, 2008, 2010

Code vstipDebug0016

Setting a simple breakpoint is easy. Just find some code:

Now set (or remove) a breakpoint either by pressing F9 or by selecting Debug | Toggle
Breakpoint on your menu bar:

If you prefer using the mouse, you can set a breakpoint by positioning your pointer in the
margin next to the line on which you want to set the breakpoint:

A154 AX.98 Enable or Disable a Breakpoint

Then click your left mouse button:

All the breakpoints you have set show up in the Breakpoints window as a list that you can
work with later on.

AX.98 Enable or Disable a Breakpoint

defAuLT Ctrl+F9

VisuAL	BAsiC	6 [no shortcut]

CoMMAnd Debug.EnableBreakpoint

Versions 2005, 2008, 2010

Code vstipDebug0017

Sometimes you want to keep a breakpoint around but need to temporarily disable it. This is
easy to do and requires only a slight muscle memory modification from setting and remov-
ing a breakpoint. Just put your cursor on the line with the breakpoint you want to disable,
then press Ctrl+F9 to disable the breakpoint (notice that the glyph in the margin changes):

To re-enable it, press Ctrl+F9 again.

All your disabled breakpoints are easily visible in the Breakpoints window alongside your en-
abled breakpoints so that you can work with them later.

 Appendix B Additional Tips A155

AX.99 Start Debugging vs. Start Without Debugging

defAuLT F5 (start); Ctrl+F5 (start w/o debug)

VisuAL	BAsiC	6 F5 (start); Ctrl+F5 (start w/o debug); Ctrl+Alt+Break (stop)

VisuAL	C#	2005 F5 (start); Ctrl+F5 (start w/o debug); Shift+F5 (stop)

VisuAL	C++	2 F5 (start); Ctrl+F5 (start w/o debug); Alt+F5 (stop)

VisuAL	C++	6 F5 (start); Ctrl+F5 (start w/o debug); Shift+F5 (stop)

VisuAL	sTudio	6 F5 (start); Ctrl+F5 (start w/o debug); Shift+F5 (stop)

WindoWs Alt,D, S (start); Alt,D, H (start w/o debug)

Menu Debug | Start Debugging; Debug | Start Without Debugging

CoMMAnd Debug.Start; Debug.StartWithoutDebugging

Versions 2005, 2008, 2010

Code vstipDebug0037

There seems to be a great deal of confusion as to what actually happens when you use Start
Debugging (F5) versus Start Without Debugging (Ctrl+F5):

Starting with Debugging
Let’s start with the basics: When you press F5 (Start Debugging) in Visual Studio, it launches
your application, attaches the debugger, and lets you do all the “normal” things you would
expect.

According to the documentation (see “Debugger Roadmap” at http://msdn.microsoft.com/en-
us/library/k0k771bt(v=VS.100).aspx), here is what the debugger does:

“The Visual Studio debugger is a powerful tool that allows you to observe the run-time
behavior of your program and locate logic errors. The debugger works with all Visual
Studio programming languages and their associated libraries. With the debugger, you
can break, or suspend, execution of your program to examine your code, evaluate and
edit variables in your program, view registers, see the instructions created from your
source code, and view the memory space used by your application.”

http://msdn.microsoft.com/en-us/library/k0k771bt(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/k0k771bt(v=VS.100).aspx

A156 AX.99 Start Debugging vs. Start Without Debugging

The debugger: Release builds
One popular misconception is that the debugger doesn’t come into play for release builds.
This isn’t true. Set a breakpoint in some code for a release build, and press F5 to see whether
it stops there. Of course it does!

The debugger is attached. Now, what about things that aren’t happening?

Note Release builds are optimized versions of your code, so make sure to test your breakpoint
on a piece of code that is used.

For example, you can’t use the System.Diagnostics.Debug class methods to send messages to
the Output window because the compiler strips them out for release builds:

Starting Without Debugging
This is exactly what it sounds like. When you choose the Start Without Debugging option,
the application starts without the debugger attached. That’s it! Nothing else happens. It just
doesn’t attach the debugger. Otherwise, everything else is the same. So, the practical im-
plications of this are obvious: Without the debugger attached, when the application runs, it
does not hit breakpoints, emit debug messages, and so on.

So now let’s deal with the biggest myth about choosing the Start Without Debugging option.

Myth: Start Without Debugging creates a release build
Not true. It uses the build you are currently on. So if you are using a debug build and you
press Ctrl+F5, Visual Studio runs that debug build. The easiest way to test this is to use condi-
tional compilation to see whether you are using a debug build:

 Appendix B Additional Tips A157

In this example, the Console statements run, but the System.Diagnostics.Debug statement
does not run because the debugger is not attached. So you get the following output:

Finally
OK, so the obvious question is “Why have this option?” Well, the answer is simple: So that
you can run the application without having the overhead of the debugger attached, to do a
quick “Smoke Test” to see whether the code runs. As you learn more about this feature, you
might find other reasons for wanting to run without the debugger attached.

Now you have a better idea of the difference between the Start Debugging and Start
Without Debugging options.

AX.100 Set As Start Page

WindoWs ALT, P, P, P, Enter

Menu Project | Set As Start Page

CoMMAnd Project.SetAsStartPage

Versions 2005, 2008, 2010

Code vstipProj0027

When you create a new web project, the default start page is set for you automatically and
is the first page you see when you start debugging. However, you might find that you want a
different page to start with instead. It’s easy to change the start page. Simply right-click the
new start page in Solution Explorer, and select Set As Start Page:

A158 AX.100 Set As Start Page

The changes take effect immediately, and the new page becomes the start page until you
change it.

In case you are curious, this actually changes the Specific Page value in your Web Application
properties dialog box (Web Tab, Start Action):

For websites, you can find this in the project properties dialog box under Start Options:

 Appendix B Additional Tips A159

AX.101 Enable Debugging in Web.Config

Versions 2008, 2010

Code vstipProj0026

If you have ever created a web project in Visual Studio, you have undoubtedly encountered
the following dialog box:

A quick read tells you that it defaults to the Modify The Web.config File To Enable Debugging
option:

A couple of things need to be pointed out here:

●● You can avoid this dialog box by editing your Web.config file manually and setting
debug to true.

●● No dialog box comes up to enable you to turn this off again before you deploy, so be
aware that you should ensure that it is turned off before you go to production.

A160 AX.102 View the Error List Window

AX.102 View the Error List Window

defAuLT Ctrl+\, E; Ctrl+\, Ctrl+E

VisuAL	BAsiC	6 Ctrl+\, E; Ctrl+\, Ctrl+E; Ctrl+W, Ctrl+E

VisuAL	C#	2005 Ctrl+\, E; Ctrl+\, Ctrl+E; Ctrl+W, Ctrl+E; Ctrl+W, E

VisuAL	C++	2 Ctrl+\, E; Ctrl+\, Ctrl+E

VisuAL	C++	6 Ctrl+\, E; Ctrl+\, Ctrl+E

VisuAL	sTudio	6 Ctrl+\, E; Ctrl+\, Ctrl+E

WindoWs Alt,V, I

Menu View | Error List

CoMMAnd View.ErrorList

Versions 2005, 2008, 2010

Code vstipTool0018

You can view the Error List window by pressing Ctrl+\, E inside Visual Studio:

Also, you can filter by type, using the toggle buttons at the top (Errors, Warnings, Messages)
to show or hide particular messages:

 Appendix B Additional Tips A161

AX.103 Show Error Help from Errors List Window

defAuLT F1

VisuAL	BAsiC	6 F1

VisuAL	C#	2005 F1

VisuAL	C++	2 F1

VisuAL	C++	6 F1

VisuAL	sTudio	6 F1

WindoWs F1

Menu [Context Menu] | Show Error Help

CoMMAnd Help.F1Help

Versions 2005, 2008, 2010

Code vstipTool0020

You can get help on any error in the Errors List window by right-clicking any error and choos-
ing Show Error Help. This opens the documentation, if available, with details about the spe-
cific error:

AX.104 Hide or Show Error List When the Build Finishes with Errors

WindoWs Alt,T, O

Menu Tools | Options | Projects and Solutions | Default

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0022

By default, the Error List window appears when build errors have occurred:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A162 AX.105 Show the Output Window During Build

You can change this behavior by going to Tools | Options | Projects And Solutions | General
and clearing the Always Show Error List If Build Finishes With Errors check box.

AX.105 Show the Output Window During Build

WindoWs Alt,T, O

Menu Tools | Options | Projects and Solutions | General

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0045

When you do a build, by default, it always shows the Output window. If you don’t want
the Output window to show up every time you do a build, you can go to Tools | Options |
Projects And Solutions | General and clear the Show Output Window When Build Starts check
box:

Of course, you can bring up the Output window anytime by pressing Ctrl+Alt+O.

 Appendix B Additional Tips A163

AX.106 Navigate Among Errors in the Output Window

defAuLT F8 (next); Shift+F8 (previous)

VisuAL	BAsiC	6 [no shortcut]

VisuAL	C#	2005 F8 (next); Shift+F8 (previous)

VisuAL	C++	2 F4 (next); Shift+F4 (previous)

VisuAL	C++	6 F8 (next); F4 (next)

VisuAL	sTudio	6 F8 (next); F12 (next); Shift+F8 (previous); Shift+F12 (previous)

CoMMAnd Edit.GoToNextLocation; Edit.GoToPrevLocation;

Versions 2005, 2008, 2010

Code vstipTool0043

Did you know that you can use toolbar buttons on the Output window to navigate between
errors?

Also, assuming the Output window is active, you can use F8 (next) and Shift+F8 (previous) to
navigate among the errors as well.

The cursor in the editor automatically follows you as you go through the errors, places the
cursor where you can make changes so that you just start typing, and has an indicator in the
far left margin to show your current position:

A164 AX.107 Customize the Output Window

AX.107 Customize the Output Window

WindoWs Alt,T, O

Menu Tools | Options | Environment | Fonts and Colors | Show settings for | Output Window

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0044

Working with the Output window is fairly common. Personalizing the window to your needs
can definitely improve your work day. The Output window can be modified from its original
configuration:

Just go to Tools | Options | Fonts And Colors | Show Settings For | Output Window. You can
change the font type, color, and size for a variety of display items, as shown in the following
illustration:

Here’s the result in the Output window:

 Appendix B Additional Tips A165

Obviously, you’ll want to experiment with combinations that suit you.

AX.108 Step Out of or Over a Method

defAuLT Shift+F11 (step out); F10 (step over)

VisuAL	BAsiC	6 Shift+F11 (step out); Ctrl+Shift+F8 (step out); F10 (step over); Shift+F8 (step
over)

VisuAL	C#	2005 Shift+F11 (step out); F10 (step over)

VisuAL	C++	2 Shift+F7 (step out); F10 (step over)

VisuAL	C++	6 Shift+F11 (step out); F10 (step over)

VisuAL	sTudio	6 Shift+F11 (step out); F10 (step over)

WindoWs Alt,D, T (step out); Alt, D, O (step over)

Menu Debug | Step Out; Debug | Step Over

CoMMAnd Debug.StepOut ; Debug.StepOver

Versions 2005, 2008, 2010

Code vstipDebug0035

When debugging your code, you often come across a call to another method:

A166 AX.108 Step Out of or Over a Method

At this point, if you want to see what is in the method, you can step into it by pressing F11:

Step Out
Once inside, you might decide you don’t really need to go through all the code. You can, at
any time, step out by pressing Shift+F11, which finishes execution of the current method and
returns you to the original call:

From here, you can continue on as you normally would with your debugging.

 Appendix B Additional Tips A167

Step Over
You have another option when you get to a method call:

You can decide that the method should just run without having to look at what is inside it.
If you want to run the method and move to the next line of code, just press F10 to step over
that method:

You can now navigate more effectively by using these techniques to determine how deep
you want to get into method calls.

AX.109 Clearing Your DataTips

WindoWs Alt,D, A, A, ENTER (clear all)

Menu Debug | Clear All DataTips; Debug | Clear All DataTips Pinned to [file]

CoMMAnd Debug.ClearAllDataTips

Versions 2010

Code vstipDebug0014

As you create your DataTips, you might find that it is necessary to clear them out when you
are done. You can clear your DataTips in a couple of ways from the Debug menu:

A168 AX.109 Clearing Your DataTips

Clear All DataTips
This command does what it says and clears all (pinned and floating) DataTips in the solution.

Clear All DataTips Pinned to [File Name]
Clear only the pinned DataTips in [file name]. This option appears only if you have at least
one pinned DataTip in a file. The referenced file is the one you have currently open in the
editor.

 Appendix B Additional Tips A169

AX.110 Create User Tasks in the Task List

defAuLT Ctrl+\, Ctrl+T; Ctrl+\, T

VisuAL	BAsiC	6 Ctrl+\, Ctrl+T; Ctrl+\, T; Ctrl+ALT+K

VisuAL	C#	2005 Ctrl+\, Ctrl+T; Ctrl+\, T; Ctrl+W,Ctrl+T; Ctrl+W, T

VisuAL	C++	2 Ctrl+\, Ctrl+T; Ctrl+\, T

VisuAL	C++	6 Ctrl+\, Ctrl+T; Ctrl+\, T

VisuAL	sTudio	6 Ctrl+\, Ctrl+T; Ctrl+\, T; Ctrl+Alt+K

WindoWs Alt, V, K

Menu View | Task List

CoMMAnd View.TaskList

Versions 2005, 2008, 2010

Code vstipTool0027

Creating tasks is useful when you need reminders for getting work done. User Tasks is a
checklist of “to do” items that are stored in the Solution User Options (.suo) file. They are per-
user settings and are not typically checked into source control:

To begin, make sure that User Tasks is selected from the drop-down list in the Task List
(Ctrl+\, T):

A170 AX.110 Create User Tasks in the Task List

Next, click the Create User Task button:

Now you can enter any task you want:

You can easily edit any task by double-clicking or pressing Enter while in it. Also, you can set
priority levels on them by clicking in the box to the far left of any task:

Naturally, you can sort them by any column, such as Description or Priority:

 Appendix B Additional Tips A171

When you are done with a task, you can just click the check box to mark it complete:

Or you can right-click the task and delete it:

Note A command called CreateUserTask is available, but it doesn’t accept any arguments and
creates only a blank task. For this reason, I didn’t list it in the summary information.

A172 AX.111 Show the Full File Path in the Task List

AX.111 Show the Full File Path in the Task List

WindoWs Alt,T, O

Menu Tools | Options

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0033

Sometimes you have comments and/or shortcuts with descriptions and/or file names that are
the same but in different solutions. Knowing the full path to the file can help you determine
which item you are looking at in the Task List. This tip can help you with the items that are
part of the Comments and Shortcuts areas. Normally, an item in the Task List doesn’t have
the full path:

You can enable the full path by going to Tools | Options | Environment | Task List | Task List
Options and clearing the Hide Full File Paths check box:

Now you can see the full file path in the Task List and clearly see where a comment or short-
cut resides:

 Appendix B Additional Tips A173

AX.112 Disable the Prompt for Deleting Items from the Task List

WindoWs Alt,T, O

Menu Tools | Options | Environment | Task List | Task List

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0031

When dealing with the Task List, removing items is quite common. To delete an item from
the Task List, simply right-click any item and choose Delete:

The following prompt appears:

You can turn the prompt dialog box off by going to Tools | Options | Environment | Task List |
Task List Options and clearing the Confirm Deletion Of Tasks check box:

A174 AX.113 Navigate Task List Entries with the Keyboard

Now when you delete tasks, you have no dialog box to contend with. Of course, this means
that you can also now accidentally delete a task without anything to stop you, so use this op-
tion at your own risk.

AX.113 Navigate Task List Entries with the Keyboard

defAuLT F8 (next location); Shift+F8 (prev location); [no shortcut] (next task); [no shortcut] (prev task)

VisuAL	BAsiC	6 [no shortcut] (next location); [no shortcut] (prev location); Ctrl+Shift+F12 (next task); [no
shortcut](prev task)

VisuAL	C#	2005 F8 (next location); Shift+F8 (prev location); [no shortcut] (next task); [no shortcut] (prev task)

VisuAL	C++	2 F4 (next location); Shift+F4 (prev location); [no shortcut] (next task); [no shortcut] (prev task)

VisuAL	C++	6 F8 (next location); F4 (next location); [no shortcut] (next task); [no shortcut] (prev task)

VisuAL	sTudio	6 F8 (next location); F12 (next location); Shift+F8 (prev location); Shift+F12 (prev location); [no
shortcut] (next task); [no shortcut] (prev task)

CoMMAnd Edit.GoToNextLocation; Edit.GoToPrevLocation; View.NextTask; View.PreviousTask

Versions 2005, 2008, 2010

Code vstipTool0092

F8 and Shift+F8 are the universal “next” and “previous” keyboard shortcuts for items in tool
window lists. For example, when the Task List is up, these keyboard commands move the fo-
cus between task items. If the Errors window is up, the commands move the focus between
errors. However, you cannot use these commands to switch to the Task List from the Errors
window.

What if you wanted a set of keyboard shortcuts that switched to the Task List and then navi-
gated between them? Just go to Tools | Options | Environment | Keyboard, and assign short-
cut keys to the View.NextTask and View.PreviousTask commands, as shown in the following
illustration.

Note For more information about assigning shortcut keys, see vstipTool0063 (“Keyboard
Shortcuts: Creating New Shortcuts,” page 127).

 Appendix B Additional Tips A175

AX.114 Navigating Between Output Window Panes with the Keyboard

CoMMAnd Window.NextSubPane; Window.PreviousSubPane

Versions 2005, 2008, 2010

Code vstipTool0091

The Output window can have several panes. How many depends on your context:

You can use Window.[Next / Previous]Subpane to move between these panes. However,
the commands are not bound, by default, to any keyboard mappings. That is easily solved
by going to Tools | Options | Environment | Keyboard and assigning shortcut keys to the
commands.

Note For more information about assigning shortcut keys, see vstipTool0063 (“Keyboard
Shortcuts: Creating New Shortcuts,” page 127).

A176 AX.115 The Watch Window: Moving Values Between Watch Windows

AX.115 The Watch Window: Moving Values Between Watch Windows

defAuLT Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

VisuAL	BAsiC	6 Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

VisuAL	C#	2005 Ctrl+Alt+W,1; Ctrl+D, Ctrl+W; Ctrl+D, W; Ctrl+Alt+W,[2-4]

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

VisuAL	sTudio	6 Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

WindoWs Alt,D, W, W, [1-4]

Menu Debug | Windows | Watch | Watch [1,2,3,4]

CoMMAnd Debug.Watch[1,2,3,4]

Versions 2005, 2008, 2010

Code vstipTool0105

You can have up to four Watch windows in Visual Studio. The reason you get all these win-
dows is so that you can easily organize your watches into groups. Opening a particular win-
dow is easy enough: Just press Ctrl+Alt+W and then select the number of the window you
want (1, 2, 3, or 4):

The only problem is that anytime you use Add Watch or QuickWatch, the watch expression
always gets added to Watch 1:

Moving Between Windows
What if you want to move to another window? Let’s look at some of your options.

 Appendix B Additional Tips A177

Type it in
You can just go to the window you want and type in the value you are looking for:

Copy and paste
You can copy and paste the value from one window to another:

Note You can copy but not cut in the Watch window. You have to delete the original value from
Watch 1 if you want to actually “move” it.

Click and drag
You can click and crag to copy a value from one window to another:

A178 AX.116 The Immediate Window: Simple Printing and Changing Values

AX.116 The Immediate Window: Simple Printing and Changing Values

defAuLT Ctrl+Alt+I

VisuAL	BAsiC	6 Ctrl+Alt+I; Ctrl+G

VisuAL	C#	2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

WindoWs Alt,D, W, I

Menu Debug | Windows | Immediate

CoMMAnd Debug.Immediate

Versions 2005, 2008, 2010

Code vstipTool0094

The Immediate Window’s versatility is great, and it can give instant feedback with infor-
mation you might need to help with your application. The first thing people usually learn
when using it is how to print values. Just go into debug mode, and use either debug.
Print(variable)	or (more commonly) just ?variable:

Additionally, you can modify values:

This is pretty basic assignment in these examples, but you can run pretty much any valid
code to change values.

 Appendix B Additional Tips A179

AX.117 The Immediate Window: Working with Members

defAuLT Ctrl+Alt+I

VisuAL	BAsiC	6 Ctrl+Alt+I; Ctrl+G

VisuAL	C#	2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

VisuAL	C++	2 Ctrl+Alt+I

VisuAL	C++	6 Ctrl+Alt+I

VisuAL	sTudio	6 Ctrl+Alt+I

WindoWs Alt,D, W, I

Menu Debug | Windows | Immediate

CoMMAnd Debug.Immediate

Versions 2005, 2008, 2010

LAnguAges C#, VB

Code vstipTool0095

When using the Immediate Window, you work with class and object members directly. Both
the traditional usage in Debug mode and the lesser-known use in Design mode is available.

Debug
You can use any method or property as long as it is in context. So, for example, when you are
in debug mode, you can call any method that is in scope:

Design

Warning When working with members at design time, a build will occur. This might have un-
intended consequences, so make sure you have experimented with this feature a bit before you
use it on production code.

A180 AX.117 The Immediate Window: Working with Members

Note You cannot use design time expression evaluation in project types that require starting up
an execution environment, including Visual Studio Tools for Office projects, web projects, Smart
Device projects, and SQL projects.

A lesser-known feature is that you can work with properties and methods while in design
mode. If you have static (“Shared” in VB) methods on a class, for example, you can just ex-
ecute them without going into debug mode:

For object members, you need to create an instance of the object before working with the
members:D

ow
n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Appendix B Additional Tips A181

AX.118 The Immediate Window: Design-Time Breakpoints

defAuLT Ctrl+Alt+I

VisuAL	BAsiC	6 Ctrl+Alt+I; Ctrl+G

VisuAL	C#	2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

VisuAL	C++	2 Ctrl+Alt+I

VisuAL	C++	6 Ctrl+Alt+I

VisuAL	sTudio	6 Ctrl+Alt+I

WindoWs Alt,D, W, I

Menu Debug | Windows | Immediate

CoMMAnd Debug.Immediate

Versions 2005, 2008, 2010

LAnguAges C#, VB

Code vstipTool0096

In vstipTool0095 (“The Immediate Window: Working with Members,” page A179), I demon-
strated that you could do design-time execution of members. I thought it would be instruc-
tive to mention that you can also use this technique to hit breakpoints in your code.

For example, assume you have an application that has a class with a static method.

Now set a breakpoint on a line of code:

Then, in design mode, execute the method from the Immediate Window.

It executes the code and stops at the breakpoint, ready for you to continue debugging:

A182 AX.119 The Immediate Window: Running Commands

This is an interesting feature of design-time execution, which you can use to quickly get to an
area for debugging.

AX.119 The Immediate Window: Running Commands

defAuLT Ctrl+Alt+I

VisuAL	BAsiC	6 Ctrl+Alt+I; Ctrl+G

VisuAL	C#	2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

VisuAL	C++	2 Ctrl+Alt+I

VisuAL	C++	6 Ctrl+Alt+I

VisuAL	sTudio	6 Ctrl+Alt+I

WindoWs Alt,D, W, I

Menu Debug | Windows | Immediate

CoMMAnd Debug.Immediate

Versions 2005, 2008, 2010

Code vstipTool0098

You can run commands when you are in the Immediate Window. Just type >[command] to
run any command. When I want to quickly clear out the Immediate Window, one of my fa-
vorite commands to run is >cls:

 Appendix B Additional Tips A183

Any valid command can be run in this way, so you can run any command you want from the
Immediate Window.

AX.120 Class View and Object Browser Icons

Versions 2005, 2008, 2010

Code vstipTool0076

You often encounter icons to represent symbols in a variety of places, such as when you use
the Object Browser:

A184 AX.120 Class View and Object Browser Icons

The help documentation lists out the icons for you and I have listed them in the following
table for your reference. You can see them online at http://msdn.microsoft.com/en-us/library/
y47ychfe.aspx.

Class View and Object Browser Icons:

Icon Description Icon Description
Namespace Method or function

Class Operator

Interface Property

Structure Field or variable

Union Event

Enum Constant

TypeDef Enum item

Module Map item

Intrinsic External declaration

Delegate Macro

Exception Template

Map Unknown or error

Global Type forwarding

Extension method

Modifier Icons:

Icon Description

<No Signal Icon> Public. Accessible from anywhere in this component and from any component
that references it.
Protected. Accessible from the containing class or type, or those derived from the
containing class or type.

Private. Accessible only in the containing class or type.

Internal. Accessible only from this component.

Friend. Accessible only from the project.

Shortcut. A shortcut to the object.

http://msdn.microsoft.com/en-us/library/y47ychfe.aspx
http://msdn.microsoft.com/en-us/library/y47ychfe.aspx

 Appendix B Additional Tips A185

AX.121 Output Window vs. Immediate Window

WindoWs Alt,T, O

Menu Tools | Options | Debugging | General

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0046

Depending on your settings, you might want to redirect Output window messages that you
create to the Immediate window, or vice versa. So, consider your messages (Asserts, for ex-
ample) that currently go to the Output window:

Go to Tools | Options | Debugging | General, and select the Redirect All Output Window Text
To The Immediate Window check box:

A186 AX.122 The Object Browser: Settings

Now your messages go to the Immediate window instead of the Output window:

Note Not all information is redirected to the Immediate window. In this example, the results of
your Assert are redirected, but some system information is always shown in the Output window.

AX.122 The Object Browser: Settings

defAuLT Ctrl+Alt+J

VisuAL	BAsiC	6 Ctrl+Alt+J; F2

VisuAL	C#	2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

VisuAL	C++	2 Ctrl+Alt+J; Shift+Alt+F1

VisuAL	C++	6 Ctrl+Alt+J

VisuAL	sTudio	6 Ctrl+Alt+B; F2

WindoWs Alt,V, J

Menu View | Object Browser

CoMMAnd View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0080

Object Browser settings are a critical part of your browsing experience. They determine
what you see and how much detail exists. This tip shows you how to use the settings to your
advantage.

First, the settings button is located to the far right on the toolbar and looks like a sheet of
paper with a check mark in it. There is quite a bit to look at, as you can see:

 Appendix B Additional Tips A187

Note The options you see are based on your context in the Object Browser, so not all options
may be currently available.

Containers vs. Namespaces

View Containers
Sets the highest-level items in the Objects pane to physical containers, such as components,
assemblies, source browser (.bsc) files, and output type libraries (.tlb). These expand to show
the namespaces that are contained:

A188 AX.122 The Object Browser: Settings

View Namespaces
Sets the highest-level items in the Objects pane to namespaces. Namespaces stored in mul-
tiple physical containers are merged. These expand to show the items that are contained:

Base and Derived Types

 Appendix B Additional Tips A189

Show Base Types
Toggles showing the Base Types folder and contents.

Show Derived Types
Toggles showing the Derived Types folder and contents and is available only for Visual C++
projects and the .NET Framework.

Hidden Types and Members

Show Hidden Types And Members
Toggles display of hidden types in the Objects pane and hidden members in the Members
pane. Hidden items show up as dimmed items in the lists.

Public, Protected, Private, and Other Members

Show Public Members
Displays members that are public or protected:

A190 AX.122 The Object Browser: Settings

Show Protected Members
Displays members that are protected:

Show Private Members
Displays members with private accessibility:

 Appendix B Additional Tips A191

Show Other Members
Displays members that do not fall into the category of public, protected, private, or inherited:

Inherited Members and Extension Methods

Show Inherited Members
Toggles display of inherited members in the Members pane, as shown in the following
illustrations:

Off:

On:

A192 AX.123 The Object Browser: Search

Show Extension Methods
Toggles the display of extension methods in the Members pane:

AX.123 The Object Browser: Search

defAuLT Ctrl+K, Ctrl+R (goto to search)

VisuAL	BAsiC	6 Ctrl+K, Ctrl+R (goto to search)

VisuAL	C#	2005 [no shortcut] (goto to search)

VisuAL	C++	2 [no shortcut] (goto to search)

VisuAL	C++	6 Ctrl+K, Ctrl+R (goto to search)

VisuAL	sTudio	6 Ctrl+K, Ctrl+R (goto to search)

CoMMAnd View.ObjectBrowserGoToSearchCombo; View.ObjectBrowserClearSearch; View.
ObjectBrowserSearch

Versions 2005, 2008, 2010

Code vstipTool0081

When you use the Object Browser, typically you need to find something fast. Search is a
great way to find what you are looking for within the current browsing scope. To use search,
just type the string you are looking for into the Search box and press Enter or click the Search
button:

 Appendix B Additional Tips A193

Searches are a “contains” operation and are not case-specific. For example, typing in the
search term ask highlights the substring in the results. The search utility filters the Objects
pane to show only those items that contain the search string:

You can repeat any previous search by clicking the drop-down list arrow in the Search area:

A194 AX.123 The Object Browser: Search

This list persists even after Visual Studio is closed because the values are stored in the registry
(HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\<version>\Object_Browser):

You can clear any search (and remove the filter on the Objects pane) by clicking the Clear
Search button to the right of the Search box:

View.ObjectBrowserSearch Command
You can invoke the View.ObjectBrowserSearch command to quickly do a search by using
a command. This is particularly useful if you have a search you perform frequently be-
cause you can create command aliases for your common search strings. See vstipTool0068
(“Understanding Commands: Aliases,” page 113) for more information about command
aliases.

The command is relatively straightforward. Just type in View.objectBrowsersearch	[search	
string]:

This yields a result based on the current Object Browser settings:

 Appendix B Additional Tips A195

AX.124 The Object Browser: Objects Pane

defAuLT Ctrl+Alt+J

VisuAL	BAsiC	6 Ctrl+Alt+J; F2

VisuAL	C#	2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

VisuAL	C++	2 Ctrl+Alt+J; Shift+Alt+F1

VisuAL	C++	6 Ctrl+Alt+J

VisuAL	sTudio	6 Ctrl+Alt+B; F2

WindoWs Alt,V, J

Menu View | Object Browser

CoMMAnd View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0082

When working with the Object Browser, you will inevitably find yourself in the Objects pane
located just below the Search area:

A196 AX.124 The Object Browser: Objects Pane

The Objects pane displays an expandable list of symbols whose top-level nodes represent
components or namespaces (based on your choice in the settings) available in the current
browsing scope. These top-level nodes typically contain symbols that contain other symbols.
To expand or collapse a node selected in the list, click its arrow sign or press Enter.

When you right-click in the Objects pane, you can see a list of options. What you see de-
pends on the item chosen, but it generally looks something like the following:

 Appendix B Additional Tips A197

Following are descriptions of the possible options and what they do.

Go To Definition
Takes you to the line of code where the item is defined:

Browse Definition
Takes you to the primary node (typically top level) for the selected symbol in the Object
Browser:

A198 AX.124 The Object Browser: Objects Pane

Find All References
Performs a search on the currently selected object symbol by using the current browsing
scope with results shown in the Find Symbol Results dialog box:

 Appendix B Additional Tips A199

Filter To Type
Shows only the selected type in the Objects pane. Essentially, it makes the selected item
the top-level item in the pane. It is particularly useful for focusing on a single namespace or
component:

Filter To Type searches only on the item selected, and you can take the filter off by clicking
the Clear Search button to the right of the Search box:

A200 AX.124 The Object Browser: Objects Pane

Copy
Copies a symbol reference that can be pasted into a designer and also copies the full path
and name of the selected item to the clipboard.

View Namespaces
Sets the highest-level items in the Objects pane to logical namespaces. Namespaces stored in
multiple physical containers are merged:

View Containers
Sets the highest-level items in the Objects pane to physical containers, such as projects, com-
ponents, assemblies, source browser (.bsc) files, and output type libraries (.tlb). These can be
expanded to show the namespaces they contain:

 Appendix B Additional Tips A201

Sort Alphabetically
Lists items alphabetically by their names in ascending order:

Sort By Object Type
Lists items in order of their type, such as base classes, followed by derived classes, interfaces,
methods, and so forth:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

A202 AX.124 The Object Browser: Objects Pane

Sort By Object Access
Lists items in order of their access type, such as public or private:

Group By Object Type
Sorts items into groups by type, such as classes, interfaces, properties, methods, and so on.
This is a great organizational feature:

Go To Declaration
Takes you to the declaration of the symbol in the code. This is available only in Visual C++
projects.

 Appendix B Additional Tips A203

AX.125 The Object Browser: Members Pane

defAuLT Ctrl+Alt+J

VisuAL	BAsiC	6 Ctrl+Alt+J; F2

VisuAL	C#	2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

VisuAL	C++	2 Ctrl+Alt+J; Shift+Alt+F1

VisuAL	C++	6 Ctrl+Alt+J

VisuAL	sTudio	6 Ctrl+Alt+B; F2

WindoWs Alt, V, J

Menu View | Object Browser

CoMMAnd View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0083

Each object can contain members such as properties, methods, events, constants, variables,
and enum values. Selecting an object in the Objects pane (left) displays its members in the
Members pane (right):

While in the Members pane, you can do several things. Many of these activities are duplicates
of actions you can take in other areas of the Object Browser, so I will reference those areas to
avoid duplication:

A204 AX.125 The Object Browser: Members Pane

Go To Definition, Find All References, and Copy
These are the same as in the Objects pane (vstipTool0082, “The Object Browser: Objects
Pane,” page A195).

View Call Hierarchy
This command is unique to the Members pane and opens up the Call Hierarchy window
(vstipTool0005, “Using the Call Hierarchy,” page 310).

Show *
These options are the same as the ones available in the Object Browser settings (vstip-
Tool0080, “The Object Browser: Settings,” page A186).

Sort *
These options are the same as the ones available in the Objects pane (vstipTool0082, “The
Object Browser: Objects pane,” page 124).

 Appendix B Additional Tips A205

Group By Member Type
This is similar to the same option in the Objects pane but different enough to warrant a quick
look. When you use this option, members are grouped into their respective types:

AX.126 The Object Browser: Description Pane

defAuLT Ctrl+Alt+J

VisuAL	BAsiC	6 Ctrl+Alt+J; F2

VisuAL	C#	2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

VisuAL	C++	2 Ctrl+Alt+J; Shift+Alt+F1

VisuAL	C++	6 Ctrl+Alt+J

VisuAL	sTudio	6 Ctrl+Alt+B; F2

WindoWs Alt, V, J

Menu View | Object Browser

CoMMAnd View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0084

The Description pane (bottom right) displays detailed information about the currently se-
lected item (Objects pane) or member (Members pane). You can copy (right-click anywhere
in the pane) data from the Description pane to the clipboard and then paste it into the code
editor:

A206 AX.127 The Object Browser: Creating a Keyboard Shortcut for Add To References

The information displayed depends on the selection and can include the following:

●● Name and parent object

●● Properties and attributes

●● Syntax in the programming language of the active project

●● Links to related objects and members

●● Descriptions, comments, and Help text

●● Version of the .NET Framework in which the object or member is included

AX.127 The Object Browser: Creating a Keyboard Shortcut for
Add To References

CoMMAnd View.ObjectBrowserAddReference

Versions 2005, 2008, 2010

Code vstipTool0085

A command is available for almost anything you can do in the Object Browser. You can see
this by going to Tools | Options | Keyboard and typing in view.objectbrowser in the Show
Commands Containing area:

 Appendix B Additional Tips A207

This means that you can create a shortcut key for all kinds of activities. (See vstipTool0063 ,
“Keyboard Shortcuts: Creating New Shortcuts,” page 127.) I’ll provide a short example here.

So let’s say you want to make it easy to get the Add To References In Selected Project In
Solution Explorer functionality available on the toolbar in a keyboard shortcut:

Just go to Tools | Options | Keyboard, type view.objectbrowseraddreference in the Show
Commands Containing area, enter the shortcut you want to use, and click Assign:

You now have a shortcut key you can use anytime you want instead of having to use the
toolbar.

A208 AX.128 The Object Browser: Type-Ahead Selection

AX.128 The Object Browser: Type-Ahead Selection

defAuLT Ctrl+Alt+J

VisuAL	BAsiC	6 Ctrl+Alt+J; F2

VisuAL	C#	2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

VisuAL	C++	2 Ctrl+Alt+J; Shift+Alt+F1

VisuAL	C++	6 Ctrl+Alt+J

VisuAL	sTudio	6 Ctrl+Alt+B; F2

WindoWs Alt,V, J

Menu View | Object Browser

CoMMAnd View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0086

Type-ahead support is available in the Object Browser lists. For example, I have a list of items
in the Objects pane:

I type act, and I get the following result:

 Appendix B Additional Tips A209

As you can see, it takes me to the first item that begins with act. I can continue typing until I
find exactly what I want, or I can browse from there.

AX.129 The Object Browser: Exporting Your Settings

WindoWs Alt,T, I

Menu Tools | Import and Export Settings

CoMMAnd Tools.ImportandExportSettings

Versions 2005, 2008, 2010

Code vstipTool0087

After you have the Object Browser configured the way you want it, you probably want to ex-
port the settings. In fact, you might have several different configurations you use, depending
on the circumstances. For more information about exporting, see vstipEnv0021 (“Exporting
Your Environment Settings,” page 6). For now, let’s just use a quick example to get your
Object Browser settings exported. First, go to Tools | Import And Export Settings and choose
Export Selected Environment Settings:

A210 AX.129 The Object Browser: Exporting Your Settings

Click Next, and then clear the All Settings box to clear out all the currently selected items:

Now select Object Browser Options under General Settings:

 Appendix B Additional Tips A211

Click Next, and then give the .vssettings file a name and the path to store it in:

Click Finish, click Close, and you are all set to go. Anytime you need these settings again, you
can import them.

AX.130 The Immediate Window: Implicit Variables

defAuLT Ctrl+Alt+I

VisuAL	BAsiC	6 Ctrl+Alt+I; Ctrl+G

VisuAL	C#	2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

VisuAL	C++	2 Ctrl+Alt+I

VisuAL	C++	6 Ctrl+Alt+I

VisuAL	sTudio	6 Ctrl+Alt+I

WindoWs Alt,D, W, I

Menu Debug | Windows | Immediate

CoMMAnd Debug.Immediate

Versions 2005, 2008, 2010

LAnguAges C#, VB

Code vstipTool0100

A212 AX.130 The Immediate Window: Implicit Variables

In the Immediate Window, you can create implicit variables for use in your debugging ef-
forts. These implicit variables never go out of scope and can be treated as any other variable.
They are approached differently in VB and C#.

C#
To create an implicit variable in C#, just declare any variable in the Immediate window:

If you are in debug mode, you can actually see the variable in your Locals window. Implicit
variables show up with a “$” character in front of them:

VB
In VB, you cannot declare implicit variables in the Immediate Window. But if you use an un-
declared variable, an implicit variable is created automatically. Unfortunately, VB implicit vari-
ables are not listed in the Locals window:

 Appendix B Additional Tips A213

AX.131 Show External Code

Versions 2005, 2008, 2010

Code vstipDebug0031

The Call Stack window provides an option to show external code. Let’s start with the basics.
When you are in break mode and you look at a “normal” call stack, you see the following:

Note The Call Stack window (Ctrl+Alt+C) is only available while debugging.

Let’s define what “normal” is in this case. Essentially, what you see here is determined by the
Enable Just My Code (Managed Only) setting in Tools | Options | Debugging | General:

A214 AX.131 Show External Code

This setting is on by default, and it is the reason you see the “[External Code]” sections in
your Call Stack. Selecting Enable Just My Code (Managed Only) means that you want to
see your code without any information getting in the way. If you want to see the details of
“[External Code],” just right-click anywhere in the Call Stack and choose Show External Code:

Now you should be able to see the external calls:

 Appendix B Additional Tips A215

The grey part is where “[External Code]” used to be. Let’s zoom in on a couple of the entries:

Notice that now you are looking into the details of what is happening. It remains this way
until you turn it off again.

By the way, if you ever need to turn this feature off, just right-click the Call Stack again and
select Show External Code. It turns off this feature, and you are back to the original view.

There is no option to turn this feature on and off, but just for reference, this setting is stored
in the registry at HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\10.0\Debugger un-
der ShowExternalCode.

AX.132 Understanding Just My Code

WindoWs Alt,T, O

Menu Tools | Options

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

LAnguAges C++ (managed only), C#, VB

Code vstipDebug0032

You often want to debug just the code you have written and exclude any Framework or
external component code that you are using. If you go to Tools | Options | Debugging |
General, you can find an option to Enable Just My Code (Managed Only):

A216 AX.132 Understanding Just My Code

Lots of people wonder what “Just My Code” really means. So let’s start with what the docu-
mentation says (http://msdn.microsoft.com/en-us/library/h5e30exc.aspx):

“To distinguish user code from non-user code, Just My Code looks at three things: DBG
Files, PDB files, and optimization.”

DBG and PDB files

One way to figure out what is “your code” is to look and see whether it has DBG and/or PDB
files. In case you didn’t know, DBG files have been superseded by the PDB format.

The PDB extension stands for “program database.” It holds the debugging information that
was introduced in Visual C++ version 1.0. You can find out more about PDB files at http://
support.microsoft.com/kb/121366/en-us. This is typically deep-level information about the
source, so if you have these files, either it’s your code or someone trusted you enough to give
them to you. In other words, it is basically “yours.”

Optimization
When optimization is turned off (the default setting for Debug builds), it factors into the
code being considered “yours” as well. As stated in the documentation mentioned earlier, the
optimization “option enables or disables optimizations performed by the compiler to make
your output file smaller, faster, and more efficient.”

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://msdn.microsoft.com/en-us/library/h5e30exc.aspx
http://support.microsoft.com/kb/121366/en-us
http://support.microsoft.com/kb/121366/en-us

 Appendix B Additional Tips A217

Many optimizations are available, such as optimizing for application speed or the size of your
program. You can get see the full list of features at http://msdn.microsoft.com/en-us/library/
k1ack8f1.aspx. Basically, optimization does many things that are great for a shipping applica-
tion but not for one that you are currently debugging.

C#
In C#, this is found in the Project properties on the Build tab:

VB
In VB, it is in the Project properties on the Compile tab, but you have to click the Advanced
Compiler Settings button:

http://msdn.microsoft.com/en-us/library/k1ack8f1.aspx
http://msdn.microsoft.com/en-us/library/k1ack8f1.aspx

A218 AX.133 Attach To Process (Tools vs. Debug Menu)

C++
In C++, you can find optimization options under the Project properties, under C/C++,
Optimization:

Finally
So if the PDB information is there and optimization is not turned on, the code is considered
“yours” as far as Visual Studio is concerned.

AX.133 Attach To Process (Tools vs. Debug Menu)

defAuLT Ctrl+Alt+P

VisuAL	sTudio	6 Ctrl+Alt+P; Ctrl+Shift+R

VisuAL	C#	2005 Ctrl+Alt+P

VisuAL	C++	2 Ctrl+Alt+P

VisuAL	C++	6 Ctrl+Alt+P

VisuAL	sTudio	6 Ctrl+Alt+P; Ctrl+Shift+R

WindoWs Alt, T, P; Alt, D, P, Enter

Menu Tools | Attach to Process; Debug | Attach to Process

CoMMAnd Tools.AttachtoProcess; Debug.AttachtoProcess

Versions 2005, 2008, 2010

Code vstipDebug0033

I decided to figure out what the difference is between Debug | Attach To Process and Tools |
Attach To Process. I’ll spare you the suspense: They are the same.

OK so why are they there? The answer is simple: Prior to Visual Studio 2010, when you didn’t
have a project open in Visual Studio, it would not show the Debug menu. So the only way
you could use Attach To Process was to use the Tools menu:

 Appendix B Additional Tips A219

Beginning in Visual Studio 2010, the Debug menu is available even when a project isn’t open:

Essentially, the redundancy is unnecessary in Visual Studio 2010, but it actually served a pur-
pose in prior versions.

AX.134 The Immediate Window: Running WinDbg and SOS (Son of Strike)
Commands

defAuLT Ctrl+Alt+I

VisuAL	BAsiC	6 Ctrl+Alt+I; Ctrl+G

VisuAL	C#	2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

VisuAL	C++	2 Ctrl+Alt+I

VisuAL	C++	6 Ctrl+Alt+I

VisuAL	sTudio	6 Ctrl+Alt+I

WindoWs Alt,D, W, I

Menu Debug | Windows | Immediate

CoMMAnd Debug.Immediate

Versions 2005, 2008, 2010

Code vstipTool0097

It would take a long time to go into detail about WinDbg and SOS (Son of Strike), so I will
avoid that here. I want to give you a quick view into how SOS works in the Immediate
Window. If you want to get hard-core with debugging, the absolute best places to learn are
these two blogs:

●● John Robbins, at Wintellect: http://www.wintellect.com/CS/blogs/jrobbins/default.aspx

●● Tess Ferrandez, an ASP.NET Escalation Engineer at Microsoft: http://blogs.msdn.com/b/tess

http://www.wintellect.com/CS/blogs/jrobbins/default.aspx
http://blogs.msdn.com/b/tess/

A220 AX.134 The Immediate Window: Running WinDbg and SOS (Son of Strike) Commands

Loading SOS in the Immediate Window
With that said, let’s take a look at what it takes to get SOS going in the Immediate Window
when using 32-bit and 64-bit architectures. As we go along, I also want to show you the
messages you commonly encounter when trying to set this up. First, open the Immediate
Window (Ctrl+Alt+I), type in .load	sos, and press Enter.

32-bit
You most likely get the following message:

“SOS not available while Managed only debugging. To load SOS, enable unmanaged debug-
ging in your project properties.”

To fix this, go to your project properties page and click the Debug tab.

Then select Enable Unmanaged Code Debugging:

Now go back to the Immediate Window, and type .load	sos again. It might take a few sec-
onds, but eventually you should see the following message:

 Appendix B Additional Tips A221

Note Your version might be different based on the CLR being used.

64-bit
You might see the following message:

“Error during command: extension C:\Windows\Microsoft.NET\framework64\v4.0.30319\
sos.dll could not load (error 193)”

This means that you are attempting to debug an x64 (64-bit) application. Visual Studio cur-
rently offers no support for interop (managed/unmanaged) debugging on x64. You can
fix this in VB by going to the project properties (Compile tab) and clicking the Advanced
Compile Options button:

In C#, you would go to the Build tab of your project properties instead. Then, under Target
CPU, choose x86:

Using SOS
Once you have Son of Strike loaded, there are a variety of WinDbg commands you can lever-
age. I’ll cover some of the more interesting ones in this section.

A222 AX.134 The Immediate Window: Running WinDbg and SOS (Son of Strike) Commands

Threads and symbols
Type !threads to see threading info:

Do you see the error that says “PDB symbol for clr.dll not loaded”? This is a common error
that is trying to tell you that you need to get symbols. The easiest way to do this is to go to
Tools | Options | Debugging | Symbols and select the Microsoft Symbol Servers check box in
the Symbol File (.pdb) Locations area:

Warning There is definitely a performance hit when loading symbols, so be prepared to have
some delays as you debug.

 Appendix B Additional Tips A223

Dump the managed heap
You can dump the managed heap by typing !dumpheap. Just watch out—this is pretty ver-
bose output by default:

Current thread call stack
If you want to display the call stack for the current thread, you can use !clrstack. The follow-
ing illustration shows a sample of the output:

These are just a few of the commands you can use. You can get as deep or as shallow into
this as you want, but the moral of this story is that you can run WinDbg and SOS commands
from the Immediate Window and do some serious debugging from within the IDE.

A224 AX.135 Creating a Class Diagram from Class View

AX.135 Creating a Class Diagram from Class View

Menu [Context Menu] | View Class Diagram

CoMMAnd ClassViewContextMenus.ClassViewItem. ViewClassDiagram

Versions 2005, 2008, 2010

LAnguAges C#, VB

Code vstipTool0112

If you like using class diagrams, you can easily create them by using the Class View
(Ctrl+Shift+C) window. Just right-click a namespace or class, for example, and choose View
Class Diagram:

AX.136 Placing the Call Stack and Call Hierarchy Windows

Versions 2005, 2008, 2010

Code vstipTool0115

When you are working with the Call Stack or Call Hierarchy windows, they can sometimes get
a little lengthy. Usually you see them docked at the bottom. This is a great feature, but not
much fun if you want to look at, say, 20 lines in the stack. You might find it useful to dock the
window with Solution Explorer (which by default is docked to the right of your screen). Just
drag the tab toward Solution Explorer, and place it with the other tabs:

 Appendix B Additional Tips A225

Now you are all set, and you can see much more information while you work:

A226 AX.137 Delete All Breakpoints

Also, recall that this has no impact on your Design Mode experience because the window
layouts are different. (See vstipEnv0052, “Window Layouts: Design, Debug, and Full Screen,”
page 91)

AX.137 Delete All Breakpoints

defAuLT Ctrl+Shift+F9

VisuAL	BAsiC	6 Ctrl+Shift+F9

VisuAL	C#	2005 Ctrl+Shift+F9

VisuAL	C++	2 [no shortcut]

VisuAL	C++	6 Ctrl+Shift+F9

VisuAL	sTudio	6 Ctrl+Shift+F9

WindoWs Alt,D, D

Menu Debug | Delete All Breakpoints

CoMMAnd Debug.DeleteAllBreakpoints

Versions 2005, 2008, 2010

Code vstipDebug0025

You can delete all your breakpoints at once. You have a couple of options for doing this.

Warning If you want them back, make sure that you export your breakpoints before you use
either of these options. See vstipDebug0003, “How to Import and Export Breakpoints” on page
329, for information about how to back up your breakpoints.

Debug | Delete All Breakpoints; Ctrl+Shift+F9
If you use the Debug menu or Ctrl+Shift+F9, the behavior hasn’t changed from previous ver-
sions: All breakpoints get deleted:

 Appendix B Additional Tips A227

You will get the following dialog box to verify that you want to delete all the breakpoints:

A228 AX.137 Delete All Breakpoints

Breakpoints Window
In Visual Studio 2010, you can delete all breakpoints that match the current search criteria.
Only those breakpoints that are currently visible in the Breakpoints window are deleted. This
is a powerful concept that allows you to remove unwanted breakpoints in bulk that are no
longer needed, but still keep the ones you will use later:

You get the following dialog box to verify that you want to delete the breakpoints. Notice
the additional text concerning the current search criteria:

You will always get a dialog box to verify that you want to delete all the breakpoints. You can
turn this off by going to Tools | Options | Debugging | General and clearing the Ask Before
Deleting All Breakpoints check box:

 Appendix B Additional Tips A229

Warning Just because you can turn it off doesn’t mean you should turn it off. I don’t recom-
mend it.

AX.138 Make Object ID

CoMMAnd DebuggerContextMenus.AutosWindow.MakeObjectID

Versions 2008, 2010

LAnguAges C#, VB

Code vstipDebug0015

Note The idea for this tip came originally from John Robbins at Wintellect (http://www.wintellect.
com).

Ever want to track an object even if it is out of scope? How about seeing whether an object
has been garbage collected? Well, you can do it with Object IDs. Just follow these steps:

	 1.	 Set a breakpoint in your code where you can get to an object variable that is in scope.

	 2.	 Run your code and let it stop at the breakpoint.

	 3.	 In your Locals or Autos Window, right-click the object variable and choose Make Object
ID from the context menu:

You should now see something new in the Value column:

http://www.wintellect.com
http://www.wintellect.com

A230 AX.138 Make Object ID

That new value is the Object ID that was generated. Let’s see how it works.

To experiment for this experiment, type both the object variable and the new Object ID in
your Watch window:

Now if you go to another method where the object variable (in this case “doc”) is out of
scope, you get the following result:

Notice that the variable name “doc” is out of scope, but I can still track the Object ID that
shows the location in memory that object variable pointed to. This is very handy for looking
at objects for full lifecycle.

Also, you can do some interesting things. For example, you can see which generation the
memory space is currently in for purposes of garbage collection:

 Appendix B Additional Tips A231

If you want to learn more about Object IDs, see the excellent blog post at http://blogs.msdn.
com/b/jimgries/archive/2005/11/16/493431.aspx.

AX.139 Change Values from the Locals Window

defAuLT Ctrl+Alt+V, L

VisuAL	BAsiC	6 Ctrl+Alt+V, L

VisuAL	C#	2005 Ctrl+Alt+V, L; Ctrl+D, Ctrl+L; Ctrl+D, L

VisuAL	C++	2 Ctrl+Alt+V, L; Alt+3

VisuAL	C++	6 Ctrl+Alt+V, L; Alt+4

VisuAL	sTudio	6 Ctrl+Alt+V, L; Ctrl+Alt+L

WindoWs Alt,D, W, L

Menu Debug | Windows | Locals

CoMMAnd Debug.Locals

Versions 2005, 2008, 2010

Code vstipTool0102

You can use the Locals window to change values while debugging in break mode. Just find
any variable you want to change in your Locals window:

http://blogs.msdn.com/b/jimgries/archive/2005/11/16/493431.aspx
http://blogs.msdn.com/b/jimgries/archive/2005/11/16/493431.aspx

A232 AX.140 Debug Executable Without Using Attach to Process

In this case, let’s change “d” to another value:

The changed value turns red afterward to indicate that it has been modified:

AX.140 Debug Executable Without Using Attach to Process

defAuLT Ctrl+Shift+O

VisuAL	BAsiC	6 Ctrl+Shift+O; Ctrl+O

VisuAL	C#	2005 Ctrl+Shift+O

VisuAL	C++	2 Ctrl+Shift+O

VisuAL	C++	6 Ctrl+Shift+O

VisuAL	sTudio	6 Ctrl+O

WindoWs Alt,F, O, P; Alt,F, D, N

Menu File | Open Project/Solution; File | Add | New Project

CoMMAnd File.OpenProject; File.AddNewProject

Versions 2005, 2008, 2010

Code vstipDebug0034

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Appendix B Additional Tips A233

Note You might need to start Visual Studio with administrator rights before you can use this tip.
You will get a warning message that allows you to elevate privileges if this is the case.

You probably already know about the Attach To Process menu items on the Debug and Tools
menus, but what if, for example, the process fails before you can attach to it? Maybe it fails
on startup, or it runs too fast for you to catch it. Did you know you can create a solution for
executables?

It’s easy to do. Just find the executable you want to create a solution for by going to File |
Open Project/Solution:

Or, if you have a solution open already, go to File | Add | Existing Project:

A234 AX.141 The Watch Window: Hexadecimal Display

Now you can run the executable just like any other project by pressing F5. If you have mul-
tiple projects, make sure to set it as the startup.

When you are debugging an executable without the source code, the available debugging
features are limited, whether you attach to a running executable or add the executable to a
Visual Studio solution.

If the executable was built without debug information in a compatible format, available
features are further limited. If you have the source code, the best approach is to import the
source code into Visual Studio and create a debug build of the executable in Visual Studio:

AX.141 The Watch Window: Hexadecimal Display

Menu [Context Menu] | Hexadecimal Display

CoMMAnd Debug.HexadecimalDisplay

Versions 2005, 2008, 2010

Code vstipTool0110

All the variable windows (Locals, Autos, QuickWatch, and Watch) support showing the hexa-
decimal display for values. These values are particularly useful when you are dealing with
data that requires any hex input for values. In any variable window, you can right-click any-
where and choose Hexadecimal Display:

 Appendix B Additional Tips A235

You now have hex values displayed for the values in all the variable windows:

You can repeat this action to turn the hex display off.

AX.142 Edit And Continue

WindoWs Alt,T, O

Menu Tools | Options

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipDebug0038

Did you know you can edit your code while you are debugging? You can do it with the
Edit And Continue (EnC) feature. First, you can find this option under Tools | Options |
Debugging | Edit And Continue:

A236 AX.142 Edit And Continue

However, in many language-specific scenarios, you can’t use this feature. For more detailed
information, see the topic “Edit and Continue” at http://msdn.microsoft.com/en-us/library/
bcew296c(v=VS.100).aspx.

The preceding caveat notwithstanding, this is an interesting feature that allows you to edit
code while you are debugging and to continue execution without having to do a full recom-
pile of the code.

Disclaimer
I would be remiss if I didn’t mention that there are some people who don’t think using Edit
And Continue is a good idea. John Robbins, whose opinion I respect a great deal, is one of
those people, and he makes some compelling arguments why you might not want to use this
feature all the time. You can find John’s post at http://www.wintellect.com/CS/blogs/jrobbins/
archive/2004/10/17/c-edit-and-continue-announced.aspx.

Interestingly, you can find Jeff Atwood’s rebuttal to John’s argument at http://www.coding-
horror.com/blog/2006/02/revisiting-edit-and-continue.html.

The bottom line: Make your own informed decision about using Edit And Continue, but even
if you do use it, be fully aware of the implications of changes you make when using it.

http://msdn.microsoft.com/en-us/library/bcew296c(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/bcew296c(v=VS.100).aspx
http://www.wintellect.com/CS/blogs/jrobbins/archive/2004/10/17/c-edit-and-continue-announced.aspx
http://www.wintellect.com/CS/blogs/jrobbins/archive/2004/10/17/c-edit-and-continue-announced.aspx
http://www.codinghorror.com/blog/2006/02/revisiting-edit-and-continue.html
http://www.codinghorror.com/blog/2006/02/revisiting-edit-and-continue.html

 Appendix B Additional Tips A237

AX.143 Print with Line Numbers

defAuLT Ctrl+P

VisuAL	BAsiC	6 Ctrl+P

VisuAL	C#	2005 Ctrl+P

VisuAL	C++	2 Ctrl+P; Ctrl+Shift+F12; Ctrl+Shift+Alt+F2

VisuAL	C++	6 Ctrl+P

VisuAL	sTudio	6 Ctrl+P

WindoWs Alt,F, P

Menu File | Print

CoMMAnd File.Print

Versions 2005, 2008, 2010

Code vstipEnv0006

Want to print your line numbers with your code? Don’t worry! You can do it by just checking
the Include Line Numbers option in the Print dialog box:

A238 AX.144 Printing the File Path in the Page Header

AX.144 Printing the File Path in the Page Header

WindoWs Alt,F, U

Menu File | Page Setup

CoMMAnd File.PageSetup

Versions 2005, 2008, 2010

Code vstipEnv0008

This feature is on by default in Visual Studio 2010, but just in case you accidentally turn it off
or maybe you don’t want the file path in the page header, just go to File | Page Setup and
notice the Page Header check box:

The Page Header setting toggles the printing of the file path in the page header.

AX.145 Printing in Different Fonts and Colors

WindoWs Alt,T, O

Menu Tools | Options

CoMMAnd Tools.Options

Versions 2005, 2008

Code vstipEnv0007

Ever change your fonts or colors in the editor only to be frustrated because the fonts and
colors do not print correctly or as expected? Just go to Tools | Options | Environment | Fonts
And Colors on your menu bar, and then in the Show Settings For drop-down box, select
Printer. Now you can change how your printed output looks:

 Appendix B Additional Tips A239

To use your editor colors when you print, just click Use and select Text Editor Settings:

The color and font settings from the text editor will now be applied to your printed output.

Note This is a copy operation, so if you change the text editor settings, you must redo this step
to copy the new settings over.

AX.146 Get Rid of the Splash Screen

Versions 2005, 2008, 2010

Code vstipEnv0046

When you start Visual Studio, the splash screen is often the first thing you see:

A240 AX.147 Understanding Check Accessibility

Did you know that you can suppress it? Just go to the properties of your Visual Studio pro-
gram icon:

Now click the Shortcut tab:

Add /nosplash to the end of the Target area:

Now when you run Visual Studio, you no longer see the splash screen.

AX.147 Understanding Check Accessibility

WindoWs Alt,T, B

Menu Tools | Check Accessibility; [Context Menu] | Check Accessibility

CoMMAnd Tools.CheckAccessibility

Versions 2005, 2008, 2010

Code vstipProj0028

According to the documentation in “Accessibility in Visual Studio and ASP.NET,” at http://
msdn.microsoft.com/en-us/library/ms228004(v=VS.100).aspx, accessibility is an important
consideration in your development work:

“Accessibility standards enable you to build Web pages that can be used by people who have
disabilities. [You can] configure ASP.NET Web server controls to make sure that they generate
accessible HTML.”

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://msdn.microsoft.com/en-us/library/ms228004(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms228004(v=VS.100).aspx

 Appendix B Additional Tips A241

It is always better to make your websites accessible to people with disabilities, and in some
cases, it’s required. Did you know that you can easily determine whether a page meets acces-
sibility requirements by right-clicking on any page and choosing Check Accessibility?

This opens the Accessibility Validation dialog box:

Following are descriptions of each option on the Accessibility Validation dialog box.

Check For
WCAG Priority 1 & 2—checks for compliance with Web Content Accessibility Guidelines
(http://www.w3.org/WAI/intro/wcag.php).

http://www.w3.org/WAI/intro/wcag.php

A242 AX.148 Automatic vs. Default in Fonts and Colors

Access Board Section 508—checks accessibility by using the standards that were defined by
the United States government in Section 508 of the Rehabilitation Act, which are based on
the WCAG (http://www.section508.gov).

Show
●● errors	and	Warnings Shows relevant items that violate the rules selected in the

Check For section:

●● Manual	Checklist Generates informational messages that can be used as guides
while the errors and warnings are addressed:

AX.148 Automatic vs. Default in Fonts and Colors

WindoWs Alt,T, O

Menu Tools | Options

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipEnv0009

If you’ve ever wondered what the difference is between the Default and Automatic options in
the fonts and colors found at Tools | Options | Environment | Fonts And Colors, see the next
illustration:

http://www.section508.gov/

 Appendix B Additional Tips A243

Default

The Default setting is pretty straightforward. It uses the default colors set up by Visual Studio
for the item selected. The colors are what Visual Studio defines as the default. You might call
these the “normal” colors, for want of a better term. The good news is that you can always
restore these settings by just clicking Use Defaults in the upper-right corner of the dialog
box:

A244 AX.148 Automatic vs. Default in Fonts and Colors

Automatic
The Automatic setting is a lot more interesting. Here is the definition of Automatic from the
documentation (the bold emphasis is mine):

“Items can inherit the […] color from other display items such as Plain Text. Using this option,
when you change the color of an inherited display item, the color of the related display items
also change automatically. For example, if you selected the Automatic value for Compiler Error
and later changed the color of Plain Text to Red, Compiler Error would also automatically in-
herit the color Red.”

OK, so let’s show you what this means. Following are the current settings for Plain Text:

Notice, among other things, that the Item foreground is black. Now let’s change the fore-
ground color to red:

 Appendix B Additional Tips A245

Now let’s change the display item to Comment and see what the settings are there:

Notice that the Item foreground is green and is set to Default. If we change the Item fore-
ground to Automatic, we get the following:

A246 AX.148 Automatic vs. Default in Fonts and Colors

Notice that Comment inherited the Item Foreground setting from the Plain Text setting we
just changed to red. So now we clearly see the relationship between the Plain Text setting
and some of the other display items. You need to be aware of the following factors:

●● Not all items inherit from plain text.

●● Plain text inherits from the Windows System.

Let’s address the second point. With all the colors back to the default settings, let’s look at
the Plain Text setting again:

Plain Text has a default Item Foreground setting of black again. Where does the plain text
default color come from? Let’s see what happens if we change the Windows System colors.
In this example, I’m using Windows 7, so your settings might be elsewhere, but all versions
of Windows have a similar area. In the case of Windows 7, it’s called Change Windows Colors
And Metrics, as you can see in the following illustration:

When I click this option, it brings me to the Window Color And Appearance dialog box:

 Appendix B Additional Tips A247

Now I change the Item to Window and the font color to lime green:

A248 AX.149 Visual Studio Permissions Needed on Windows Vista or Later

I click Apply and then switch back to Visual Studio and notice that, among other things, the
Plain Text setting now has a default color of lime green:

So the plain text default color clearly inherits from the Windows System, and now various
display items inside Visual Studio can inherit from the Plain Text setting by setting their color
to Automatic. Now we finally have a clear picture of the difference between Default and
Automatic in the Fonts And Colors dialog box.

At this point, you might want to change all your colors back to what they were before we
started this adventure.

AX.149 Visual Studio Permissions Needed on Windows Vista or Later

Versions 2005, 2008, 2010

Code vstipEnv0056

A popular misconception is that you need to have Administrator privileges to use Visual
Studio. While this is true in some cases, it isn’t true in all of them. So when do you need to
run Visual Studio as an administrator and when don’t you? This tip offers some guidance.

Installing Visual Studio (All Versions)
You need Administrator rights to install Visual Studio.

 Appendix B Additional Tips A249

Running Visual Studio 2005
To run Visual Studio 2005 on Windows Vista or later, you are prompted to run as
Administrator when you start the application. This version of Visual Studio requires that you
have Administrator rights to use it.

Specific Scenarios for Visual Studio 2008/2010

Web/Internet Information Services
Creating a new local or remote IIS website project—You cannot make changes to the Internet
Information Services (IIS) metabase (for example, creating new entries) because it requires
administrative privileges. This affects your ability to configure some settings in the Web.config
file.

Opening a local or remote IIS website project—You cannot run your website unless you use
the ASP.NET Development Server, which is the default web server for filesystem websites.
Alternatively, you can set project options to open the browser and point to the website by
using IIS.

Debugging a local or remote IIS website project—You cannot attach to a process that is run-
ning under the IIS worker process because it requires administrative privileges.

More information can be found here: http://msdn.microsoft.com/en-us/library/
ms178112(v=VS.90).aspx.

Windows Installer deployment
Windows Installer technology supports software installation on the Windows Vista (or later)
operating system. The end user installing applications on Windows Vista should receive
prompts only for each component installation that requires elevation, even when the user’s
computer runs under User Account Control (UAC).

More information can be found here: http://msdn.microsoft.com/en-us/library/
Bb384154(v=VS.100).aspx.

ClickOnce deployment
Windows Installer deployment requires administrative permissions and allows only limited
user installation; ClickOnce deployment enables non-administrative users to install and
grants only those Code Access Security permissions necessary for the application.

More information can be found here: http://msdn.microsoft.com/en-us/library/t71a733d.aspx.

http://msdn.microsoft.com/en-us/library/ms178112(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/ms178112(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/Bb384154(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/Bb384154(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/t71a733d.aspx

A250 AX.149 Visual Studio Permissions Needed on Windows Vista or Later

Code
Some code requires Administrator access to execute. If possible, alternatives to this code
should be pursued. Examples of code operations that require Administrator access are as
follows:

●● Writing to protected areas of the filesystem, such as the Windows or Program Files
directories

●● Writing to protected areas of the registry, such as HKEY_LOCAL_MACHINE

●● Installing assemblies in the Global Assembly Cache (GAC)

Generally, these actions should be limited to application installation programs. This allows
users to use administrator status only temporarily.

More information can be found here: http://msdn.microsoft.com/en-us/library/
ms173360(v=VS.100).aspx.

Debugging
According to the documentation, “you can debug any applications that you launch within
Visual Studio (native and unmanaged) as a non-administrator by becoming part of the
Debugging Group. This includes the ability to attach to a running application using the
Attach to Process command. However, it is necessary to be part of the Administrator Group
in order to debug native or managed applications that were launched by a different user.”

More information can be found here: http://msdn.microsoft.com/en-us/library/
ms173360(v=VS.100).aspx.

COM/COM Interop
Classic COM

When you add a classic COM control, such as an .ocx control, to the toolbox, Visual
Studio tries to register the control. You must have administrator credentials to register the
control.

Add-ins written by using classic COM must be registered to work in Visual Studio. You must
have administrator credentials to register the control.

COM Interop

When you build managed components and you have selected Register For COM Interop, the
managed assemblies must be registered. You must have administrator credentials to register
the assemblies.

More information can be found here: http://msdn.microsoft.com/en-us/library/
ms165100(v=VS.90).aspx.

http://msdn.microsoft.com/en-us/library/ms173360(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms173360(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms173360(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms173360(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms165100(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/ms165100(v=VS.90).aspx

 Appendix B Additional Tips A251

AX.150 Show Advanced Build Configurations

WindoWs Alt,T, O

Menu Tools | Options | Projects and Solutions | General

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipProj0016

This one is interesting, and the main reason I’m showing it to you is so that you know how to
turn this back on if it ever gets turned off.

If you go to Tools | Options | Projects And Solutions | General, you can see many available
options. Locate the Show Advanced Build Configurations option:

Simplified Build Configurations
So what does this option do? Well, when it is turned off, it uses simplified build configura-
tions, which involve several changes:

Configuration Manager
In simplified builds, the Configuration Manager is not available. It’s just disabled (or removed
completely) from all areas:

The practical implications of this are that you can’t do any custom build configurations,
which makes sense with a simplified build configuration option. So when you don’t see the
Configuration Manager anymore or it’s disabled, that is usually a clear sign that you have
turned off Show Advanced Build Configurations.

Debug Build
In a simplified build scenario, each time you press F5 or go to Debug | Start Debugging, a
debug build of your application is created. This is the expected behavior.

A252 AX.151 Emacs Emulation

Release Build
The real shocker is that you have no obvious way to create a release build. With simplified
builds, you create a release build by going to Build | Build Solution (Ctrl+Shift+B).

Advanced Build Configurations
I could do an entire series on advanced builds, but I’ll just keep it to the basics for now.
Essentially, you first select Show Advanced Build Configurations:

This option gives you access to the Configuration Manager, so you can actively switch be-
tween build types without having to remember some arcane steps to do it:

As an added bonus, it gives you the ability to make custom builds with your own special con-
figuration options specified for the build.

In short, you have many good reasons to show the advanced build configurations options
and few good reasons to turn it off.

AX.151 Emacs Emulation

WindoWs Alt,T, O

Menu Tools | Options | Environment | Keyboard

CoMMAnd Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0079

For those not familiar with the term, according to Wikipedia (http://en.wikipedia.org/wiki/
Emacs), Emacs can be defined as follows:

“[…] a class of feature-rich text editors, usually characterized by their extensibility.
Emacs has, perhaps, more editing commands than other editors, numbering over 1,000
commands. It also allows the user to combine these commands into macros to automate
work.

http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/Emacs

 Appendix B Additional Tips A253

“Development began in the mid-1970s and continues actively as of 2010. Emacs text
editors are most popular with technically proficient computer users and computer
programmers. The most popular version of Emacs is GNU Emacs, a part of the GNU
project, which is commonly referred to simply as ‘Emacs’.”

Did you know that Visual Studio supports Emacs emulation? If you are using Visual Studio
2010, you need to install the Emacs extension that can be found here:

http://visualstudiogallery.msdn.microsoft.com/en-us/09dc58c4-6f47-413a-9176-742be7463f92

Then, for Visual Studio 2008, 2005, and 2010, go to Tools | Options | Environment | Keyboard
and choose Emacs from the Apply The Following Additional Keyboard Mapping Scheme
drop-down list:

AX.152 ViM Emulation

Versions 2005, 2008, 2010

Code vstipEdit0080

Many people like to use ViM—there is no denying it. Unfortunately, Visual Studio does not
support ViM emulation out of the box. However, as of the time of this writing, you have two
solutions in the Visual Studio Gallery, depending on your version.

Visual Studio 2010
VsVim by Jared Parsons is very well reviewed, plus it is free. You can find it at http://visualstudiogallery.
msdn.microsoft.com/en-us/59ca71b3-a4a3-46ca-8fe1-0e90e3f79329.

Visual Studio 2008 and Prior
ViEmu by NGEDIT Software is available for Visual Studio versions prior to Visual Studio 2010.
It has good reviews, and the trial version is available from the gallery. It is available at http://
visualstudiogallery.msdn.microsoft.com/en-us/C9055830-39AB-4B39-A19E-4D60F195E7FC.

So, if you need ViM emulation, you have a couple options. These might not be the only op-
tions, but they are readily available in the Visual Studio Gallery.

http://visualstudiogallery.msdn.microsoft.com/en-us/09dc58c4-6f47-413a-9176-742be7463f92
http://visualstudiogallery.msdn.microsoft.com/en-us/59ca71b3-a4a3-46ca-8fe1-0e90e3f79329
http://visualstudiogallery.msdn.microsoft.com/en-us/59ca71b3-a4a3-46ca-8fe1-0e90e3f79329
http://visualstudiogallery.msdn.microsoft.com/en-us/C9055830-39AB-4B39-A19E-4D60F195E7FC
http://visualstudiogallery.msdn.microsoft.com/en-us/C9055830-39AB-4B39-A19E-4D60F195E7FC

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Table of Contents
	Foreword
	Introduction
	Part I. Productivity Techniques
	Chapter 1. Getting Started
	01.01	Running Multiple Versions of Visual Studio Side-By-Side
	01.02	Getting Table of Contents in Visual Studio 2010 Online Help
	Online Help
	Using Classic View

	01.03	Exporting Your Environment Settings
	01.04	Remove Projects from the Recent Projects List
	01.05	AutoRecover
	01.06	Improving Performance by Changing the Visual Experience in Visual Studio 2010
	01.07	Change Tool Window Animations
	01.08	Importing or Changing Your Environment Settings
	01.09	Change Your Visual Studio Color Scheme
	Seeing What You Like
	Getting the Goods
	Changing Your Colors
	Resetting the Colors

	01.10	Reset All Your Development Settings
	01.11	Customize Your Toolbars in Visual Studio 2010: Toolbars Tab
	Custom Toolbars

	01.12	Customize Your Toolbars in Visual Studio 2010: Commands Tab
	Rearrange
	Controls
	Buttons
	Modify Selection

	01.13	Visual Studio Logging
	01.14	Visual Studio Safe Mode
	01.15	The ResetSettings Switch
	Two Different Machines
	Same Machine

	Chapter 2. Projects and Items
	02.01	Search for Project Templates in the New Project Dialog Box
	Good News
	Bad News
	More Good News

	02.02	Recent Project Templates in the New Project Dialog Box
	02.03	Using Older Frameworks with Multi-Targeting
	02.04	Create Web Application or Virtual Directory in IIS
	02.05	Multiple Startup Projects
	02.06	Change the Default New Project Location
	02.07	Track Active Item in Solution Explorer
	02.08	Type-Ahead Selection Support in Solution Explorer
	02.09	Using Solution Folders
	Adding Solution Folders
	Removing Solution Folders

	02.10	Navigating Property Tabs in the Project Properties
	02.11	Pin a Project to the Recent Projects List
	02.12	Creating Temporary Projects
	02.13	Create Your Own Item Template
	02.14	Roll Your Own Project Template with the Export Template Wizard
	02.15	Organizing Your Custom Item Templates
	02.16	Organizing Your Custom Project Templates
	02.17	Reorganize the Default Item Templates
	02.18	Reorganize the Default Project Templates
	02.19	Change the Templates that Appear in the New Project or
Item Dialog Boxes

	Chapter 3. Getting to Know the Environment
	03.01	Rearrange Windows in Visual Studio 2010 Using the Guide Diamond
	03.02	Dock a Floating Tool Window Back to Its Previous Location
	03.03	Cycle Through Your Open Tool Windows
	03.04	Closing Tool Windows
	03.05	Expand and Collapse All in the Toolbox
	03.06	Searching in the Toolbox
	03.07	Navigate Among Tabs in the Toolbox
	03.08	Window Layouts: The Four Modes
	Design View
	Debugging View
	Full Screen
	File View

	03.09	Window Layouts: Design, Debug, and Full Screen
	Design Mode
	Debug Mode
	Full Screen Mode

	03.10	Working with Tabs in the Toolbox
	Creating Tabs
	Adding Items
	Custom Controls
	Renaming Tabs
	Deleting Tabs

	03.11	Using Additional Browsers for Web Development
	Adding New Browsers
	Changing the Default Browser
	Browser Window Size
	Removing Browsers

	03.12	Auto-Hide All Tool Windows
	03.13	Showing Hidden Tool Windows with the Auto Hide Channel
	03.14	Moving Tool Windows Around with Your Keyboard
	03.15	Keyboard Access to a Tool Window’s Toolbar
	03.16	Command Prompt History
	03.17	Command Prompt Tab Completion
	Simple Search
	Wildcard Search
	Finally

	03.18	Undock and Dock a Single Tool Window in a Group
	Undock
	Dock

	03.19	Understanding Commands: Simple Commands
	03.20	Understanding Commands: Aliases
	Create a New Alias
	Viewing Assigned Aliases
	Delete an Alias

	03.21	Understanding Commands: Arguments and Switches
	Basic Use
	Arguments and Switches
	List Current Options
	Reset Options
	Using the Arguments and Switches
	Make an Alias

	03.22	Testing a Command
	03.23	Understanding Commands: Running Commands
	Shortcuts
	Command Window
	Immediate Window
	Find Combo Box

	03.24	Find Keyboard Shortcuts
	03.25	Keyboard Shortcuts: Additional Mapping Schemes
	03.26	Keyboard Shortcuts: Creating New Shortcuts
	Reset

	03.27	Keyboard Shortcuts: Reset All Your Shortcuts
	03.28	Understanding Commands: Logging Commands
	Arguments
	Example

	03.29	Export Your Window Layouts
	03.30	Stop the Toolbox from Auto-Populating from the Solution
	03.31	Using External Tools
	Use Output Window
	Treat Output As Unicode
	Prompt For Arguments
	Close On Exit

	03.32	Create Keyboard Accelerators for External Tools
	03.33	Exporting Your Command Window Aliases and External Tools List
	03.34	Creating and Using a Macro
	03.35	Visual Studio Image Library
	Types of Files
	Image Library Contents
	Using the Images

	Chapter 4. Working with Documents
	04.01	Insert Documents to the Right of Existing Tabs
	04.02	Recent Files
	04.03	Working with Documents on Multiple Monitors
	04.04	Navigate Open Document Windows
	04.05	Close the Current Document Window
	04.06	Open a File Location from the File Tab
	04.07	Open the File Menu Drop-Down List from Your Keyboard
	04.08	Using the IDE Navigator
	Navigator Areas

	04.09	Multiple Views of the Same Document
	Special Note for VB Users in Visual Studio 2010
	Multiple Views

	04.10	Closing Just the Selected Files You Want
	04.11	Understanding the File Open Location
	04.12	Show Previous Versions
	04.13	Using Custom File Extension Associations

	Chapter 5. Finding Things
	05.01	Repeat Your Last Search
	05.02	Using Quick Find
	Find What
	Look In
	Find Options
	Buttons

	05.03	Using a Simple Quick Replace
	05.04	Hide the Quick Find and Quick Replace Tool Window After the
First Match
	05.05	Undo Quick Replace and Replace in Files
	Quick Replace (Ctrl+H)
	Replace in Files (Ctrl+Shift+H)

	05.06	Using the Find Combo Box Keyboard Shortcuts
	Find (Ctrl+D)
	Run Command (Ctrl+/)
	Go To Line (Ctrl+G)
	Go To File (Ctrl+Shift+G)
	Set a Breakpoint (F9)

	05.07	Using Incremental Search
	05.08	Search the Currently Selected String Without the Find Window
	05.09	Find In Files: Find Options
	Find What

	05.10	Find In Files: Result Options
	Find Results [1,2] Window
	Navigation
	Clear All
	Display File Names Only
	Keep Modified Files Open After Replace All

	05.11	Replace In Files: Basic Options
	Find Options
	Replace With
	Result Options
	Execution

	05.12	Go To Definition for Cascading Style Sheets
	05.13	How to Use Navigate To
	05.14	Understanding Find Symbol
	Find What
	Look In
	Find Options
	Search Results

	05.15	Find Symbol Results Shortcuts
	Go To Definition (F12)
	Go To Declaration (Ctrl+F12)
	Go To Reference (Shift+F12)
	Browse Definition
	Copy (Ctrl+C)
	Clear All

	05.16	Replace in Files: Tagged Expressions
	Example

	05.17	Customize Results in Find In Files Searches
	Variables

	Chapter 6. Writing Code
	06.01	Zoom In or Out of Text in the Editor Using the Mouse Wheel
	06.02	Zoom In or Out of Text in the Editor
	Combo Box
	Keyboard
	Universal Zoom

	06.03	How to Keep from Accidentally Copying a Blank Line
	06.04	Make IntelliSense Transparent
	06.05	Cut or Delete the Current Line
	Cut
	Delete

	06.06	Using the New IntelliSense: Keywords
	06.07	Using the New IntelliSense: Pascal Case
	06.08	Comment and Uncomment in Web Pages
	Comment
	Uncomment

	06.09	Insert a Blank Line Above or Below the Current Line
	06.10	Transpose Lines, Words, and Characters
	06.11	How to Cycle Through the Clipboard Ring
	06.12	Using the Undo and Redo Stack
	06.13	Undo and Redo Global Actions
	06.14	How to Use Reference Highlighting
	Navigation
	Turning it Off

	06.15	Moving or Selecting Between Matching Braces
(C++, C# Only)
	Moving
	Selecting

	06.16	Invoke Statement Completion
	06.17	Move Between the Common Tab and All Tab in Statement
Completion (VB)
	06.18	Using Parameter Information
	06.19	Using Quick Info
	06.20	Word Completion
	06.21	Drag and Drop Code into the Toolbox
	06.22	Using Smart Tags from the Keyboard
	06.23	Organize Using Statements (C# Only)
	Remove Unused Usings
	Sort Usings
	Remove and Sort

	06.24	Switch Between Design and Source in Web Projects
	Split View

	06.25	Toggle Designer
	06.26	Change the Default View in the HTML Editor
	06.27	Jump Back to the Editor from Just About Anywhere
	06.28	Replacing Text with a Box Selection
	06.29	Pasting the Contents of One Box Selection into Another
	06.30	Pasting a Single Selection into a Box Selection
	06.31	Using Zero-Length Box Selection
	06.32	View White Space
	06.33	Collapsing Your Code with Outlining
	Minus Sign
	Vertical Line
	Click Anywhere in Area (Keyboard Shortcut)
	Click Anywhere in Area (Menu Item)

	06.34	Using Hide Selection
	06.35	Collapse to Definitions with Outlining
	06.36	Cut, Copy, and Paste Collapsed Code with Outlining
	06.37	Understanding Word Wrap
	06.38	Properties Window Keyboard Shortcuts
	Working with the Tool Window
	Working with Categories
	Property Items

	06.39	Document Outline: Web Projects
	06.40	Inserting Code Snippets
	Tab
	Keyboard Shortcut and Context Menu
	Result

	06.41	Surround with a Code Snippet
	06.42	Using Code Snippets
	06.43	HTML Code Snippets
	06.44	JavaScript Code Snippets
	06.45	Using the Code Snippets Manager
	06.46	Insert Quotes When Typing Attribute Values
	06.47	Format the Current Document or Selection (Web)
	06.48	Using the Navigation Bar
	06.49	HTML Editor Tag Navigation
	06.50	Format HTML on Paste
	06.51	Display HTML/CSS Warnings as Errors
	06.52	Updating JScript IntelliSense
	06.53	Using JScript Libraries in Other JScript Files
	06.54	Create New Code Snippets from Existing Ones
	06.55	Understanding the Navigation Stack
	06.56	Navigate Backward and Navigate Forward Using Go Back Markers
	06.57	Select from the Current Cursor Location to the Last Go Back Marker
	06.58	Track Changes in the Editor
	06.59	Edit Read-Only Files
	Edit In-Memory
	Make Writable

	06.60	Choosing CSS Versions
	Dedicated Style Sheets
	Embedded Styles
	Finally

	06.61	Understanding Tag Specific Options
	Exploring the Tag Specific Options Dialog Box
	Finally

	Chapter 7. Debugging
	07.01	Setting a Breakpoint with Code
	Compiler Directive

	07.02	Using Ctrl+Alt+B to Open the Breakpoints Window
	07.03	Adding Labels to Breakpoints
	07.04	Enable or Disable All Breakpoints
	07.05	TODO Comments in the Task List
	VB
	C#
	C++

	07.06	Create Custom Tokens for the Task List
	Sharing Tokens

	07.07	Create Code Shortcuts in the Task List
	07.08	Code Definition Window
	07.09	Save Changes Before Building
	Save Changes To Open Documents Only
	Prompt To Save All Changes
	Don’t Save Any Changes

	07.10	Navigate Errors in the Error List
	07.11	Ordering and Multicolumn Sorting in Tool Windows
	Column Ordering
	Multicolumn Sorting

	07.12	Pin a DataTip to Source Code
	07.13	Create a Floating DataTip
	07.14	Adding Comments to a DataTip
	07.15	Use a DataTip to Edit a Value
	07.16	DataTip Value from the Last Debug Session
	07.17	Import and Export DataTips
	07.18	Using the Call Hierarchy
	07.19	Searching Breakpoints
	07.20	Breakpoint Hit Count
	Break When The Hit Count Is Equal To
	Break When The Hit Count Is A Multiple Of
	Break When The Hit Count Is Greater Than Or Equal To

	07.21	Set a Breakpoint on a Function
	Breakpoints Window

	07.22	Set a Simple Breakpoint Condition
	Is True
	Has Changed
	Special Notes

	07.23	Set a Complex Breakpoint Condition
	07.24	Setting a Breakpoint Filter
	07.25	Setting a Tracepoint in Source Code
	Setting Tracepoints
	Change Default Message

	07.26	Import and Export Breakpoints
	07.27	Run to Cursor
	07.28	Using the Exception Assistant
	Exception Object and Description
	Troubleshooting Tips
	Help Online
	Actions
	Turning Off the Exception Assistant
	Unwind The Call Stack On Unhandled Exceptions

	07.29	Use a Specific Port for the Development Server (Web Applications)
	07.30	Application and Page Level Tracing
	Application Level Tracing
	Attributes
	Trace Details
	Page Level Tracing
	Combined Tracing
	Finally

	07.31	The Watch Window: Watching and Changing Values
	Watch Expressions
	Watch Window
	Creating a Watch Expression
	Changing Values

	07.32	Understanding QuickWatch
	What Does It Do?
	Other Options

	07.33	The Watch Window: Visualizers
	07.34	The Watch Window: Refreshing Data
	Refresh Icons
	Turning It Off

	07.35	The Watch Window: Adding Watches from Variable Windows
	Locals Window
	Autos Window
	QuickWatch
	Watch [1, 2, 3, 4] Window
	Keyboard Mapping

	07.36	Create Folders in Class View
	Create a New Folder
	Putting Items into Your Folder
	Removing Items from Folders
	Creating Subfolders
	Deleting Folders

	07.37	Search in Class View
	View.ClassViewSearch Command
	Use a Previous Search
	Clear Your Search

	07.38	Synchronize Your Class View
	07.39	The Misnamed and Misunderstood Object Browser
	07.40	The Object Browser: Setting the Browsing Scope
	Browse
	Edit Custom Component Set

	07.41	The Object Browser: Navigation and References
	Navigation
	References

	07.42	The Exceptions Dialog Box
	07.43	Setting a Breakpoint in the Call Stack Window
	07.44	Setting a Tracepoint in the Call Stack Window
	07.45	Using the WPF Tree Visualizer
	07.46	Understanding Break All Processes When One Process Breaks
	07.47	Changing Context in the Locals Window
	Debug Location Toolbar
	Process
	Thread
	Stack Frame

	07.48	Understanding the Autos Window
	Changing Values
	Current and Previous Statement
	VB Shows Three Statements on Either Side

	Part II. Extensions for Visual Studio
	Chapter 8. Visual Studio Extensions
	Introducing Visual Studio Extensions
	Installing an Extension
	Installing from the Extension Manager
	Installing from the Visual Studio Gallery
	Installing Through Xcopy
	Inside a .vsix File
	Disabling an Extension
	Uninstalling an Extension
	Resources for Developing Extensions

	08.01	Create Themes Using All Visual Studio Elements
	Visual Studio Color Theme Editor
	To Use
	To Customize
	More Information

	08.02	Insert Images into Your Code
	Image Insertion
	To Use
	To Save
	To Customize

	08.03	Add Visual Guidelines to Your Code
	Editor Guidelines
	To Install
	To Use
	To Customize

	08.04	Get More IntelliSense in Your XAML Editor
	XAML IntelliSense Presenter
	To Use
	For More Information

	08.05	Sync the Solution Explorer to the Current File
	Solution Explorer Tools
	To Use

	08.06	Add PowerCommands Options to the IDE
	PowerCommands for Visual Studio 2010
	To Use
	For More Information

	08.07	Use Emacs Commands in the Editor
	Emacs Emulation
	To Use
	To Uninstall
	More Information

	08.08	Submit to “The Daily WTF”
	Share Bad Code with the World
	To Install
	To Use
	More Information

	08.09	Diff Files Using the Editor
	CodeCompare
	To Install
	To Use
	Features
	To Uninstall
	More Information

	08.10	Run Windows PowerShell Within the IDE
	To Use
	More Information

	08.11	Visualize OData in a Graphical View
	Open Data Protocol Visualizer
	To Use
	More Information

	08.12	Run VIM Commands in the Editor
	To Use
	More Information

	08.13	Check Spelling in Your Code
	Spell Checker
	To Use

	08.14	Zoom Across All Files
	Presentation Zoom
	To Use
	Control Zooming with a Slider Using the ZoomEditorMargin Extension

	08.15	View Code Blocks Using Vertical Lines
	StructureAdornment
	To Use
	To Customize
	To Uninstall

	08.16	Get a Bird’s-Eye View of Your Code in an Editor Margin
	AllMargins
	To Use
	To Uninstall

	08.17	Build Projects from the Windows 7 Taskbar
	Win7 Taskbar Extension
	To Install
	To Use
	To Uninstall

	08.18	Triple-Click to Select an Entire Line
	Triple Click
	More Information

	08.19	Create Regular Expressions Within Your Code
	Regex Editor
	To Use
	More Information

	08.20	Get More Productivity Tools in the IDE
	To Use
	To Customize the Document Tab Well User Interface

	08.21	Create and Find Code Snippets
	Snippet Designer
	To Use
	More Information

	08.22	Document Your Code with Three Keystrokes
	GhostDoc
	To Use
	To Customize
	More Information

	08.23	Customize Visual Studio Using Windows PowerShell
	StudioShell
	To Use
	To Get Help
	To Customize
	More Information

	Appendix A. Visual Studio Keyboard Shortcut Posters
	Index
	Appendix B.
	Additional Tips from Chapter 1
	AX.01	Getting Help Samples
	AX.02	Make the Start Page Go Away
	AX.03	Bringing Back the Start Page
	AX.04	Show All Settings with Visual Basic
	AX.05	Find Your Development Settings
	AX.06	Settings Automatically Saved On Exit
	AX.07	Customize Your Toolbars in Visual Studio 2008: Toolbars Tab
	AX.08	Customize Your Toolbars in Visual Studio 2008: Commands Tab
	AX.09	Hide or Show Default Buttons on a Toolbar
	AX.10	Reset Toolbars

	Additional Tips from Chapter 2
	AX.11	Sorting Templates in the New Project Dialog Box
	AX.12	Toggle Icon Size in the New Project Dialog Box
	AX.13	Choosing the StartUp Project
	AX.14	Linked Items in Projects
	AX.15	Using the Miscellaneous Files Project
	AX.16	Change the Order of Your Application Settings
	AX.17	Hide or Show the Solution File in Solution Explorer
	AX.18	New Project Dialog Preferred Language
	AX.19	Optimizing Your Project Code

	Additional Tips from Chapter 3
	AX.20	Full Screen Mode
	AX.21	Split Your Windows Horizontally
	AX.22	Sorting Items in the Toolbox
	AX.23	Icon vs. List View in the Toolbox
	AX.24	Hide the Status Bar
	AX.25	Remove the Navigation Bar
	AX.26	Show Any Toolbar
	AX.27	Changing Auto-Hide Behavior for Tool Windows
	AX.28	Closing a Tool Window Tab Group
	AX.29	Copy and Paste with the Command Prompt
	AX.30	Customize the Command Prompt
	AX.31	Show All Toolbox Controls
	AX.32	Server Explorer: Data Connections
	AX.33	Server Explorer: Server Event Logs
	AX.34	Server Explorer: Server Management Classes
	AX.35	Window Layouts: File View
	AX.36	Rearrange Your Toolbars
	AX.37	Create a Shortcut Key for a Macro
	AX.38	How to Run External Executables from the Command Window

	Additional Tips from Chapter 4
	AX.39	Close All But This on the File Tab Channel
	AX.40	Copy a File’s Full Path from the File Tab
	AX.41	Understanding the File Tab Channel Drop-Down Button
	AX.42	How to Disable the IDE Navigator
	AX.43	Thumbnail Previews in the IDE Navigator
	AX.44	Changing Editors Using Open With

	Additional Tips from Chapter 5
	AX.45	Using a Simple Quick Find
	AX.46	Using the Find Combo Box
	AX.47	Customize the Files to Search with Find In Files
	AX.48	How to Show and Hide Find Messages
	AX.49	How to Not Automatically Search for the Currently Selected Word
	AX.50	Setting Bookmarks
	AX.51	Organizing Bookmarks
	AX.52	Navigating Bookmarks

	Additional Tips from Chapter 6
	AX.53	Turn On Line Numbers
	AX.54	Go to a Line Number
	AX.55	Comment and Uncomment Code
	AX.56	Select the Current Word
	AX.57	Delete Through the Beginning or End of a Word
	AX.58	Click and Drag Text to a New Location
	AX.59	Make Selection Uppercase or Lowercase
	AX.60	Brace Matching Rectangle
	AX.61	Automatic Delimiter Highlighting
	AX.62	Move or Select to the Top or Bottom of the Current View in the Editor
	AX.63	Format the Current Document or Selection
	AX.64	Use F6 to Jump Between Split Windows
	AX.65	Turn Off Single-Click URL Navigation in the Editor
	AX.66	Hide the Vertical and/or Horizontal Scroll Bars
	AX.67	How to Convert Tabs to Spaces and Vice Versa
	AX.68	Delete Horizontal White Space
	AX.69	Expanding Your Code with Outlining
	AX.70	Collapsing or Expanding All Your Code with Outlining
	AX.71	Turn Off or Turn On Outlining
	AX.72	Understanding Virtual Space
	AX.73	Document Outline: WPF and Silverlight Projects
	AX.74	Document Outline: Windows Form Projects
	AX.75	Change the Tooltip Font Size
	AX.76	Change the Statement Completion Font Size
	AX.77	Vertical Split View for Web Projects
	AX.78	Open JScript Braces on a New Line
	AX.79	Insert Spaces vs. Keep Tabs
	AX.80	View in Browser
	AX.81	Detect When a File Is Changed Outside the Environment
	AX.82	Turn Off the Selection Margin
	AX.83	Reuse the Same Editor Window When Opening Files
	AX.84	Sharing Snippets with Your Team
	AX.85	Swap the Current Anchor Position
	AX.86	Guidelines: A Hidden Feature for the Visual Studio Editor
	AX.87	Insert File as Text
	AX.88	Indenting: Smart vs. Block vs. None
	AX.89	Change CSS Formatting
	AX.90	How to Turn Off Automatic IntelliSense
	AX.91	Disable HTML, CSS, or JScript IntelliSense
	AX.92	Design and XAML on Different Document Tabs
	AX.93	Using Generate from Usage
	AX.94	IntelliSense Suggestion Mode
	AX.95	Turn Off Automatic Symbol Renaming When You Rename a File in Solution Explorer
	AX.96	Mark Methods and Types as Hidden from IntelliSense and the Object Browser

	Additional Tips from Chapter 7
	AX.97	Set or Remove a Breakpoint
	AX.98	Enable or Disable a Breakpoint
	AX.99	Start Debugging vs. Start Without Debugging
	AX.100	Set As Start Page
	AX.101	Enable Debugging in Web.Config
	AX.102	View the Error List Window
	AX.103	Show Error Help from Errors List Window
	AX.104	Hide or Show Error List When the Build Finishes with Errors
	AX.105	Show the Output Window During Build
	AX.106	Navigate Among Errors in the Output Window
	AX.107	Customize the Output Window
	AX.108	Step Out of or Over a Method
	AX.109	Clearing Your DataTips
	AX.110	Create User Tasks in the Task List
	AX.111	Show the Full File Path in the Task List
	AX.112	Disable the Prompt for Deleting Items from the Task List
	AX.113	Navigate Task List Entries with the Keyboard
	AX.114	Navigating Between Output Window Panes with the Keyboard
	AX.115	The Watch Window: Moving Values Between Watch Windows
	AX.116	The Immediate Window: Simple Printing and Changing Values
	AX.117	The Immediate Window: Working with Members
	AX.118	The Immediate Window: Design-Time Breakpoints
	AX.119	The Immediate Window: Running Commands
	AX.120	Class View and Object Browser Icons
	AX.121	Output Window vs. Immediate Window
	AX.122	The Object Browser: Settings
	AX.123	The Object Browser: Search
	AX.124	The Object Browser: Objects Pane
	AX.125	The Object Browser: Members Pane
	AX.126	The Object Browser: Description Pane
	AX.127	The Object Browser: Creating a Keyboard Shortcut for
Add To References
	AX.128	The Object Browser: Type-Ahead Selection
	AX.129	The Object Browser: Exporting Your Settings
	AX.130	The Immediate Window: Implicit Variables
	AX.131	Show External Code
	AX.132	Understanding Just My Code
	AX.133	Attach To Process (Tools vs. Debug Menu)
	AX.134	The Immediate Window: Running WinDbg and SOS (Son of Strike) Commands
	AX.135	Creating a Class Diagram from Class View
	AX.136	Placing the Call Stack and Call Hierarchy Windows
	AX.137	Delete All Breakpoints
	AX.138	Make Object ID
	AX.139	Change Values from the Locals Window
	AX.140	Debug Executable Without Using Attach to Process
	AX.141	The Watch Window: Hexadecimal Display
	AX.142	Edit And Continue
	AX.143	Print with Line Numbers
	AX.144	Printing the File Path in the Page Header
	AX.145	Printing in Different Fonts and Colors
	AX.146	Get Rid of the Splash Screen
	AX.147	Understanding Check Accessibility
	AX.148	Automatic vs. Default in Fonts and Colors
	AX.149	Visual Studio Permissions Needed on Windows Vista or Later
	AX.150	Show Advanced Build Configurations
	AX.151	Emacs Emulation
	AX.152	ViM Emulation

