
Learn Python The Hard Way
Release 0.5

Zed A. Shaw

September 04, 2010

CONTENTS

The Hard Way Is Easier 3
Reading and Writing . 3
Attention to Detail . 3
Spotting Differences . 3
Do Not Copy-Paste . 4
A Note On Practice And Persistence . 4
License . 4

Exercise 0: The Setup 5
Mac OSX . 5
Windows . 6
Linux . 7
Warnings For Beginners . 8

Exercise 1: A Good First Program 11
What You Should See . 11
Extra Credit . 12

Exercise 2: Comments And Pound Characters 13
What You Should See . 13
Extra Credit . 13

Exercise 3: Numbers And Math 15
What You Should See . 16
Extra Credit . 16

Exercise 4: Variables And Names 17
What You Should See . 17
Extra Credit . 18

Exercise 5: More Variables And Printing 19
What You Should See . 19
Extra Credit . 20

Exercise 6: Strings And Text 21
What You Should See . 21
Extra Credit . 22

Exercise 7: More Printing 23
What You Should See . 23

i

Extra Credit . 23

Exercise 8: Printing, Printing 25
What You Should See . 25
Extra Credit . 25

Exercise 9: Printing, Printing, Printing 27
What You Should See . 27
Extra Credit . 27

Exercise 10: What Was That? 29
What You Should See . 29
Extra Credit . 30

Exercise 11: Asking Questions 31
What You Should See . 31
Extra Credit . 31

Exercise 12: Prompting People 33
What You Should See . 33
Extra Credit . 33

Exercise 13: Parameters, Unpacking, Variables 35
Hold Up! Features Have Another Name . 35
What You Should See . 36
Extra Credit . 36

Exercise 14: Prompting And Passing 37
What You Should See . 37
Extra Credit . 38

Exercise 15: Reading Files 39
What You Should See . 40
Extra Credit . 40

Exercise 16: Reading And Writing Files 41
What You Should See . 42
Extra Credit . 42

Exercise 17: More Files 43
What You Should See . 43
Extra Credit . 44

Exercise 18: Names, Variables, Code, Functions 45
What You Should See . 46
Extra Credit . 46

Exercise 19: Functions And Variables 49
What You Should See . 49
Extra Credit . 50

Exercise 20: Functions And Files 51
What You Should See . 51
Extra Credit . 52

ii

Exercise 21: Functions Can Return Something 53
What You Should See . 54
Extra Credit . 54

Exercise 22: What Do You Know So Far? 55
What You’re Learning . 55

Exercise 23: Read Some Code 57

Exercise 24: More Practice 59
What You Should See . 60
Extra Credit . 60

Exercise 25: Even More Practice 61
What You Should See . 62
Extra Credit . 63

Exercise 26: Congratulations, Take A Test! 65

Exercise 27: Memorizing Logic 67
The Truth Terms . 67
The Truth Tables . 68

Exercise 28: Boolean Practice 69
What You Should See . 70
Extra Credit . 71

Exercise 29: What If 73
What You Should See . 73
Extra Credit . 74

Exercise 30: Else And If 75
What You Should See . 76
Extra Credit . 76

Exercise 31: Making Decisions 77
What You Should See . 78
Extra Credit . 79

Exercise 32: Loops And Lists 81
What You Should See . 82
Extra Credit . 82

Exercise 33: While Loops 85
What You Should See . 86
Extra Credit . 86

Exercise 34: Accessing Elements Of Lists 87
Extra Credit . 88

Exercise 35: Branches and Functions 89
What You Should See . 90
Extra Credit . 91

Exercise 36: Designing and Debugging 93
Rules For If-Statements . 93

iii

Rules For Loops . 93
Tips For Debugging . 93
Homework . 94

Exercise 37: Symbol Review 95
Keywords . 95
Data Types . 96
String Escapes Sequences . 96
String Formats . 97
Operators . 97

Exercise 38: Reading Code 99
Extra Credit . 99

Exercise 39: Doing Things To Lists 101
What You Should See . 102
Extra Credit . 103

Exercise 40: Dictionaries, Oh Lovely Dictionaries 105
What You Should See . 106
Extra Credit . 106

Exercise 41: A Room With A View Of A Bear With A Broadsword 107
What You Should See . 110
Extra Credit . 111

Exercise 42: Getting Classy 113
What You Should See . 116
Extra Credit . 117

Next Steps 119

Advice From An Old Programmer 121

Indices and tables 123

iv

Learn Python The Hard Way, Release 0.5

Contents:

CONTENTS 1

Learn Python The Hard Way, Release 0.5

2 CONTENTS

The Hard Way Is Easier

This simple book is meant to give you a first start in programming. The title says it is the hard way to learn to write
code; but it’s actually not. It’s the “hard” way only in that it’s the way people used to teach things. With the help of
this book, you’ll do the incredibly simple things that all programmers need to do to learn a language:

1. Go through each exercise.

2. Type in each sample exactly.

3. Make it run.

That’s it. This will be very difficult at first, but stick with it. If you go through this book, and do each exercise for 1-2
hours a night, you’ll have a good foundation for moving on to another book. You might not really learn “programming”
from this book, but you will learn the foundation skills you need to start learning the language.

This book’s job is to teach you the three most essential skills that a beginning programmer needs to know: Reading
and Writing, Attention to Detail, Spotting Differences.

Reading and Writing

It seems stupidly obvious, but, if you have a problem typing, you’ll have a problem learning to code. Not only that,
but, if you have a problem typing the fairly odd characters in source code, you’ll be unable to learn even the most basic
things about how software works.

Typing the code samples and getting them to run will help you learn the names of the symbols, get familiar with typing
them, and get you reading the language.

Attention to Detail

The one skill that separates bad programmers from good programmers is attention to detail. In fact, it’s what separates
the good from the bad, in any profession. Without paying attention to the tiniest details of your work, you’ll miss key
elements of what you create. In programming, this is how you end up with bugs and difficult to use systems.

By going through this book and copying each example exactly, you will be training your brain to focus on the details
of what you are doing, as you are doing it.

Spotting Differences

A very important skill – that most programmers develop over time – is the ability to visually notice differences between
things. An experienced programmer can take two pieces of code that are slightly different and immediately start

3

Learn Python The Hard Way, Release 0.5

pointing out the differences. In fact, programmers have invented tools to make this even easier, but we won’t be using
any of these tools. You first have to train your brain the hard way, then you can use the tools.

While you do these exercises, typing each one in, you’ll be making mistakes. It’s inevitable; even seasoned program-
mers would make a few. Your job is to compare what you’ve written to what’s required, and fix all the differences. By
doing so, you’ll train yourself to notice mistakes, bugs, and other problems.

Do Not Copy-Paste

The last thing I’ll say before we begin is that you must type each of these exercises in, manually. If you copy and
paste, you might as well just not even do them. The point of these exercises is to train your hands, your brain, and
your mind in how to read, write, and see code. If you copy-paste, you are cheating yourself out of the effectiveness of
the lessons.

A Note On Practice And Persistence

While you are studying programming, I’m studying how to play guitar. I practice it everyday for at least 2 hours a day.
I play scales, chords, and arpeggios for an hour at least and then learn music theory, ear training, songs anything else
I can. Some days I study guitar and music for 8 hours because I feel like it and it’s fun. To me repetitive practice is
natural and just how to learn something. I know that to get good at anything you have to practice every day, even if I
suck that day (which is often) or it’s difficult. Keep trying and eventually it’ll be easier and fun.

As you study this book, and continue with programming, remember that anything worth doing is difficult at first.
Maybe you’re the kind of person who is afraid of failure so you give up right away at the first sign of difficulty. Maybe
you never learned self-discipline so you can’t do anything that’s “boring”. Maybe you were told that you are “gifted”
so you never attempt anything that might make you seem stupid or not a prodigy. Maybe you’re competitive and
unfairly compare yourself to someone like me who’s been programming for 20+ years.

Whatever your reason for wanting to quit, keep at it. Force yourself to keep going. If you run into an Extra Credit
you can’t do, or a lesson you just don’t get, then skip it and come back to it later. Just keep going because with
programming there’s this very odd thing that happens.

At first, you will not understand anything. It’ll be weird, just like with learning any human language. You’ll struggle
with words, and not know what symbols are what, and it’ll all be very confusing. Then one day BANG your brain will
snap and you’ll suddenly “get it”. If you keep doing the exercises and keep trying to understand them then you’ll get
it. You might not be a master coder, but you’ll at least understand how programming works.

If you give up, you won’t ever reach this point. You’ll hit the first confusing thing (which is everything at first) and
then stop. If you keep trying, keep typing it in and trying to understand it and reading about it then you’ll eventually
get it.

Obviously though, if you go through this whole book, and you type everything in, but you still don’t understand how
to code, well then you gave it a shot. You can then safely say you tried your best and a little more and it didn’t work
out, but at least you tried. You can be proud of that.

License

This book is Copyright (C) 2010 by Zed A. Shaw. You are free to distribute this book to anyone you want, so long as
you do not charge anything for it, and it is not altered. You must give away the book in its entirety, or not at all.

4 The Hard Way Is Easier

Exercise 0: The Setup

This exercise has no code. It is simply the exercise you complete in order to get your computer setup to run Python.
You should follow these instructions as exactly as possible. For example, Mac OSX computers already have Python
2, so don’t install Python 3 (or any Python).

Mac OSX

To complete this exercise you have to finish the following tasks:

1. Go to http://learnpythonthehardway.org/wiki/ExerciseZero with your browser, get the gedit text editor, and
install it.

2. Put gedit (your editor) in your Dock so you can reach it easily.

(a) Run gedit so we can fix some stupid defaults it has.

(b) Open Preferences from the gedit menu and select the Editor tab.

(c) Change Tab width: to 4.

(d) Check off Insert spaces instead of tabs.

3. Find your “Terminal” program. Search for it. You’ll find it.

4. Put your Terminal in your Dock as well.

5. Run your Terminal program. It won’t look like much.

6. In your Terminal program, run python. You run things in Terminal by just typing their name and hitting
RETURN.

7. Hit CTRL-D (^D) and get out of python.

8. You should be back at a prompt similar to what you had before you typed python. If not find out why.

9. Learn how to make a directory in the Terminal. Search online for help.

10. Learn how to change into a directory in the Terminal. Again search online.

11. Use your editor to create a file in this directory. Typically you will make the file and then “Save” or “Save As..”
and pick this directory.

12. Go back to Terminal using just the keyboard to switch windows. Look it up if you can’t figure it out.

13. Back in Terminal see if you can list the directory to see your newly created file. Search online for how to list a
directory.

14. In gedit, go to Preferences>Editor and turn on “Automatic indentation”, set Tab width to 4 spaces, and set “Insert
spaces instead of tabs”. Next go to the View tab in Preferences and turn on “Display line numbers”.

5

http://learnpythonthehardway.org/wiki/ExerciseZero

Learn Python The Hard Way, Release 0.5

OSX: What You Should See

Here’s me doing the above on my computer in Terminal. Your computer would be different, so see if you can figure
out all the differences between what I did and what you should do.

Last login: Sat Apr 24 00:56:54 on ttys001
~ $ python
Python 2.5.1 (r251:54863, Feb 6 2009, 19:02:12)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> ^D
~ $ mkdir mystuff
~ $ cd mystuff
mystuff $ ls
... Use Gedit here to edit test.txt....
mystuff $ ls
test.txt
mystuff $

Windows

Note: Contributed by zhmark.

1. Go to http://learnpythonthehardway.org/wiki/ExerciseZero with your browser, get the gedit text editor, and
install it. You do not need to be administrator to do that.

2. Make sure you can get to gedit easily by putting it on your desktop and/or in Quick Launch - bouth options are available during setup.

(a) Run gedit so we can fix some stupid defaults it has.

(b) Open Edit->Preferences select the Editor tab.

(c) Change Tab width: to 4.

(d) Check off Insert spaces instead of tabs.

3. Find your “Terminal” program. It’s called Command Prompt, alternatively just run cmd.

4. You may make a shortcut to it on your desktop and/or Quick Launch for your convenience.

5. Run your Terminal program. It won’t look like much.

6. In your Terminal program, run python. You run things in Terminal by just typing their name and hitting
RETURN. a. If you run python and it’s not there (python is not recognized..) - install it. Make
sure you install Python 2 not Python 3. b. You may be better off with ActiveState python especially when you
miss Administrative rights

7. Hit CTRL-Z (^Z), Enter and get out of python.

8. You should be back at a prompt similar to what you had before you typed python. If not find out why.

9. Learn how to make a directory in the Terminal. Search online for help.

10. Learn how to change into a directory in the Terminal. Again search online.

11. Use your editor to create a file in this directory. Typically you will make the file and then “Save” or “Save As..”
and pick this directory.

12. Go back to Terminal using just the keyboard to switch windows. Look it up if you can’t figure it out.

6 Exercise 0: The Setup

http://learnpythonthehardway.org/wiki/ExerciseZero

Learn Python The Hard Way, Release 0.5

13. Back in Terminal see if you can list the directory to see your newly created file. Search online for how to list a
directory.

Windows: What You Should See

C:\Documents and Settings\you>python
ActivePython 2.6.5.12 (ActiveState Software Inc.) based on
Python 2.6.5 (r265:79063, Mar 20 2010, 14:22:52) [MSC v.1500 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

C:\Documents and Settings\you>mkdir mystuff

C:\Documents and Settings\you>cd mystuff

... Here you would use gedit to make test.txt in mystuff ...

C:\Documents and Settings\you\mystuff>
<bunch of unimportant errors if you istalled it as non-admin - ignore them - hit Enter>

C:\Documents and Settings\you\mystuff>dir
Volume in drive C is
Volume Serial Number is 085C-7E02

Directory of C:\Documents and Settings\you\mystuff

04.05.2010 23:32 <DIR> .
04.05.2010 23:32 <DIR> ..
04.05.2010 23:32 6 test.txt

1 File(s) 6 bytes
2 Dir(s) 14 804 623 360 bytes free

C:\Documents and Settings\you\mystuff>

You will probably see a very different prompt, Python information, and other stuff but this is the general idea. If your
system is different let us know at http://learnpythonthehardway.org and we’ll fix it.

Linux

Linux is a varied operating system with a bunch of different ways to install software. I’m assuming if you’re running
Linux then you know how to install packages so here’s your instructions:

1. Go to http://learnpythonthehardway.org/wiki/ExerciseZero with your browser, get the gedit text editor, and
install it.

2. Make sure you can get to gedit easily by putting it in your window manager’s menu.

(a) Run gedit so we can fix some stupid defaults it has.

(b) Open Preferences select the Editor tab.

(c) Change Tab width: to 4.

(d) Check off Insert spaces instead of tabs.

3. Find your “Terminal” program. It could be called GNOME Terminal, Konsole, or xterm.

4. Put your Terminal in your Dock as well.

Linux 7

http://learnpythonthehardway.org
http://learnpythonthehardway.org/wiki/ExerciseZero

Learn Python The Hard Way, Release 0.5

5. Run your Terminal program. It won’t look like much.

6. In your Terminal program, run python. You run things in Terminal by just typing their name and hitting
RETURN. a. If you run python and it’s not there install it. Make sure you install Python 2 not Python 3.

7. Hit CTRL-D (^D) and get out of python.

8. You should be back at a prompt similar to what you had before you typed python. If not find out why.

9. Learn how to make a directory in the Terminal. Search online for help.

10. Learn how to change into a directory in the Terminal. Again search online.

11. Use your editor to create a file in this directory. Typically you will make the file and then “Save” or “Save As..”
and pick this directory.

12. Go back to Terminal using just the keyboard to switch windows. Look it up if you can’t figure it out.

13. Back in Terminal see if you can list the directory to see your newly created file. Search online for how to list a
directory.

Linux: What You Should See

[~]$ python
Python 2.6.5 (r265:79063, Apr 1 2010, 05:28:39)
[GCC 4.4.3 20100316 (prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
[~]$ mkdir mystuff
[~]$ cd mystuff
... Use gedit here to edit test.txt ...
[mystuff]$ ls
test.txt
[mystuff]$

You will probably see a very different prompt, Python information, and other stuff but this is the general idea.

Warnings For Beginners

You’re done with this exercise. This exercise could actually be hard for you depending on your familiarity with your
computer. If it is difficult, then take the time to read and study and get through it, because until you can do these very
basic things you’ll find it difficult to get much programming done.

If a programmer tells you to use vim or emacs tell them no. These editors are for when you are a better programmer.
All you need right now is an editor that lets you put text into a file. We will use gedit because it is simple and the same
on all computers. Professional programmers use gedit so it’s good enough for you starting out.

A programmer may try to get you to install Python 3 and learn that. You should tell them, “When all of the python
code on your computer is Python 3 then I’ll try to learn it.” That should keep them busy for about 10 years.

A programmer will eventually tell you to use Mac OSX or Linux. If the programmer likes fonts and typography they’ll
tell you to get a Mac OSX computer. If they like control and have a huge beard then they’ll tell you to install Linux.
Again, use whatever computer you have right now that works. All you need is gedit, a Terminal, and python.

Finally the purpose of this setup is so you can do three things very reliably while you work on the exercises:

1. Write exercises using gedit.

2. Run the exercises you wrote.

8 Exercise 0: The Setup

Learn Python The Hard Way, Release 0.5

3. Fix them when they’re broken.

4. Repeat.

Anything else will only confuse you, so stick to the plan.

Warnings For Beginners 9

Learn Python The Hard Way, Release 0.5

10 Exercise 0: The Setup

Exercise 1: A Good First Program

Remember, you should have spent a good amount of time in Exercise 0 learning how to install a text editor, run the
text editor, run the Terminal, and work with both of them. If you haven’t done that then don’t go on, you’ll not have a
good time. This is the only time I’ll start an exercise with a warning that you should not skip or get ahead of yourself.

1 print "Hello World!"
2 print "Hello Again"
3 print "I like typing this."
4 print "This is fun."
5 print 'Yay! Printing.'
6 print "I'd much rather you 'not'."
7 print 'I "said" do not touch this.'

Take the above and type it into a single file named ex1.py. This is important as python works best with files ending
in .py.

Warning: Do not type the numbers on the far left of these lines. Those are called “line numbers” and they’re
used by programmers to talk about what part of a program is wrong. Python will tell you errors related to these
line numbers, but you do not type them in.

Then in Terminal you run the file by typing:

python ex1.py

If you did it right then you should see the same output I have below. If not, then you’ve done something wrong. No,
the computer is not wrong.

What You Should See

$ python ex1.py
Hello World!
Hello Again
I like typing this.
This is fun.
Yay! Printing.
I'd much rather you 'not'.
I "said" do not touch this.
$

You may see the name of your directory before the $ which is fine, but if your output is not exactly the same, then find
out why and fix it.

If you have an error it will look like this:

11

Learn Python The Hard Way, Release 0.5

$ python ex1.py
File "ex1.py", line 3
print "I like typing this.

^
SyntaxError: EOL while scanning single-quoted string
$

It’s important you be able to read these since you’ll be making many of these mistakes. Even I make many of these
mistakes. Let’s look at this line-by-line.

1. Here we ran our command in the terminal to run the ex1.py script.

2. Python then tells us that the file ex1.py has an error on line 3.

3. It then prints this line for us.

4. Then it puts a ^ (caret) character to point at where the problem is. Notice the missing " (double-quote) character?

5. Finally, it prints out a “SyntaxError” and tells us something about what might be the error. Usually these are
very cryptic, but if you copy that text into a search engine you’ll find someone else who’s had that error and you
can probably figure out how to fix it.

Extra Credit

You will also have extra credit you should do to make sure you understand each exercise. For this exercise, try these
things:

1. Make your script print another line.

2. Make your script print only one of the lines.

3. Put a ‘#’ (octothorpe) character at the beginning of a line. What did it do? Try to find out what this character
does.

From now on, I won’t explain how each exercise works unless an exercise is different for some reason. Each time
there is code you should put in a new file, the output you should see when you run the file in terminal, and extra credit
you should do.

Note: An ‘octothorpe’ is also called a ‘pound’, ‘hash’, ‘mesh’, or any number of names. Pick the one that makes you
chill out.

12 Exercise 1: A Good First Program

Exercise 2: Comments And Pound
Characters

Comments are very important in your programs. They are used to tell you what something does in English, and they
also are used to disable parts of your program if you need to remove them temporarily. Here’s how you do comments.

1 # A comment, this is so you can read your program later.
2 # Anything after the # is ignored by python.
3

4 print "I could have code like this." # and the comment after is ignored
5

6 # You can also use a comment to "disable" or comment out a piece of code:
7 # print "This won't run."
8

9 print "This will run."

Warning: This book uses “syntax highlighting”, which means that the code looks like it has colors for different
symbols and letters. This helps you read it so that you can see some errors, and your editor should use similar
coloring, but maybe not exactly the same.

What You Should See

$ python ex2.py
I could have code like this.
This will run.
$

Extra Credit

1. Find out if you were right about what the # character does and make sure you know what it’s called (octothorpe
character).

2. Take your ex2.py file and review each line going backwards. Start at the last line, and check each word in
reverse against what you should have typed.

3. Did you find more mistakes? Fix them.

4. Read what you typed above out loud, including saying each character by its name. Did you find more mistakes?
Fix them.

13

Learn Python The Hard Way, Release 0.5

Note: An ‘octothorpe’ is also called a ‘pound’, ‘hash’, ‘mesh’, or any number of names. Pick the one that makes you
chill out.

14 Exercise 2: Comments And Pound Characters

Exercise 3: Numbers And Math

Every programming language has some kind of way of doing numbers and math. Don’t worry, programmers lie
frequently about being math geniuses when they really aren’t. If they were math geniuses, they would be doing math
not writing ads and social network games to steal people’s money.

This exercise has lots of math symbols so let’s name them right away so you know what they’re called. As you type
this one in, say the names. When saying them feels boring you can stop saying them. Here’s the names:

• + plus

• - minus

• / slash

• * asterisk

• % percent

• < less-than

• > greater-than

• <= less-than-equal

• >= greater-than-equal

Notice how the operations are missing? After you type in the code for this exercise you are to go back and figure out
what each of these does and complete the table. For example, + does addition.

1 print "I will now count my chickens:"
2

3 print "Hens", 25 + 30 / 6
4 print "Roosters", 100 - 25 * 3 % 4
5

6 print "Now I will count the eggs:"
7

8 print 3 + 2 + 1 - 5 + 4 % 2 - 1 / 4 + 6
9

10 print "Is it true that 3 + 2 < 5 - 7?"
11

12 print 3 + 2 < 5 - 7
13

14 print "What is 3 + 2?", 3 + 2
15 print "What is 5 - 7?", 5 - 7
16

17 print "Oh, that's why it's False."
18

19 print "How about some more."
20

21 print "Is it greater?", 5 > -2

15

Learn Python The Hard Way, Release 0.5

22 print "Is it greater or equal?", 5 >= -2
23 print "Is it less or equal?", 5 <= -2

What You Should See

$ python ex3.py
I will now count my chickens:
Hens 30
Roosters 97
Now I will count the eggs:
7
Is it true that 3 + 2 < 5 - 7?
False
What is 3 + 2? 5
What is 5 - 7? -2
Oh, that's why it's False.
How about some more.
Is it greater? True
Is it greater or equal? True
Is it less or equal? False
$

Extra Credit

1. Above each line, use the # to write a comment to yourself explaining what the line does.

2. Remember in Exercise 0 when you started python? Start python this way again and using the above characters
and what you know, use python as a calculator.

3. Find something you need to calculate and write a new .py file that does it.

4. Notice the math seems “wrong”? There are no fractions, only whole numbers. Find out why by researching
what a “floating point” number means and how they’re actually a decimal number like 1.2 or 10.8.

5. Rewrite ex3.py to use floating point numbers so it’s more accurate.

16 Exercise 3: Numbers And Math

Exercise 4: Variables And Names

You can print things out with print and you can do math. The next step is to learn about variables. In programming
a variable is nothing more than a name for something so you can use the name rather than the something as you code.
Programmers use these variable names to make their code read more like English, and because programmers have a
lousy ability to remember things. If they didn’t use good names for things in their software they’d get lost when they
came back and tried to read their code again.

If you get stuck with this exercise, remember the tricks you’ve been taught so far of finding differences and focusing
on details:

1. Write a comment above each line explaining to yourself what it does in English.

2. Read your .py file backwards.

3. Read your .py file out loud saying even the characters.

1 cars = 100
2 space_in_a_car = 4.0
3 drivers = 30
4 passengers = 90
5 cars_not_driven = cars - drivers
6 cars_driven = drivers
7 carpool_capacity = cars_driven * space_in_a_car
8 average_passengers_per_car = passengers / cars_driven
9

10

11 print "There are", cars, "cars available."
12 print "There are only", drivers, "drivers available."
13 print "There will be", cars_not_driven, "empty cars today."
14 print "We can transport", carpool_capacity, "people today."
15 print "We have", passengers, "to carpool today."
16 print "We need to put about", average_passengers_per_car, "in each car."

Note: The _ in space_in_a_car is called an underscore character. Find out how to type it if you don’t already
know. We use this character a lot to put an imaginary space between words in variable names.

What You Should See

$ python ex4.py
There are 100 cars available.
There are only 30 drivers available.
There will be 70 empty cars today.
We can transport 120.0 people today.
We have 90 to carpool today.
We need to put about 3 in each car.
$

17

Learn Python The Hard Way, Release 0.5

Extra Credit

When I wrote this program the first time I had a mistake, and python told me about it like this:

Traceback (most recent call last):
File "ex4.py", line 8, in <module>
average_passengers_per_car = car_pool_capacity / passenger

NameError: name 'car_pool_capacity' is not defined

Explain this error in your own words, make sure you use line numbers and explain why.

Here’s more extra credit:

1. Explain why the 4.0 is used instead of just 4.

2. Remember that 4.0 is a “floating point” number, make sure you find out what that means.

3. Write comments above each of the variable assignments.

4. Make sure you know what = is called (equals) and that it’s making names for things.

5. You should also know that _ is an underscore character.

6. Try running python as a calculator like you did before and use variable names to do your calculations. Popular
variable names are also i, x, and j.

18 Exercise 4: Variables And Names

Exercise 5: More Variables And Printing

We’ll now do even more typing of variables and printing them out. This time though we’ll use something called a
“format string”. You might not know it, but every time you put " (double-quotes) around a piece of text you’ve been
making a string. A string is how you make something that your program might give to a human. You print them, save
them to files, send them to web servers, all sorts of things.

Strings are really handy, so in this exercise you’ll learn how to make strings that have variables embedded in them.
You embed variables inside a string by using specialized format sequences and then putting the variables at the end
with a special syntax that tells Python, “Hey, this is a format string, put these variables in there.”

As usual, just type this in even if you don’t understand it and make it exactly the same.

1 my_name = 'Zed A. Shaw'
2 my_age = 35 # not a lie
3 my_height = 74 # inches
4 my_weight = 180 # lbs
5 my_eyes = 'Blue'
6 my_teeth = 'White'
7 my_hair = 'Brown'
8

9 print "Let's talk about %s." % my_name
10 print "He's %d inches tall." % my_height
11 print "He's %d pounds heavy." % my_weight
12 print "Actually that's not too heavy."
13 print "He's got %s eyes and %s hair." % (my_eyes, my_hair)
14 print "His teeth are usually %s depending on the coffee." % my_teeth
15

16 # this line is tricky, try to get it exactly right
17 print "If I add %d, %d, and %d I get %d." % (
18 my_age, my_height, my_weight, my_age + my_height + my_weight)

What You Should See

$ python ex5.py
Let's talk about Zed A. Shaw.
He's 74 inches tall.
He's 180 pounds heavy.
Actually that's not too heavy.
He's got Blue eyes and Brown hair.
His teeth are usually White depending on the coffee.
If I add 35, 74, and 180 I get 289.
$

19

Learn Python The Hard Way, Release 0.5

Extra Credit

1. Change all the variables so there isn’t the my_ in front. Make sure you change the name everywhere, not just
where you used = to set them.

2. Try more format characters. %r is a very useful one, it’s like saying “print this no matter what”.

3. Search online for all of the Python format characters.

4. Try to write some variables that convert the inches and pounds to centimeters and kilos. Don’t just type in the
measurements, but work out the math in Python.

20 Exercise 5: More Variables And Printing

Exercise 6: Strings And Text

You have already been writing strings but haven’t really known what they do. In this exercise we create a bunch of
variables with complex strings so you can see what they’re for. First an explanation of strings.

A string is usually a bit of text you want to display to someone, or “export” out of the program you are writing. Python
knows you want something to be a string when you put either " (double-quotes) or ’ (single-quotes) around the text.
You saw this many times with your use of print where you would put the text you want to go to the string inside "
or ’ after the print. Then Python prints it.

Strings can also contain the format characters you’ve discovered so far. You simply put the formatted variables in the
string, and then a % (percent) character, followed by the variable. The only catch is that if you want multiple formats in
your string to print multiple variables, then you need to put them inside () (parenthesis) separated by , (commas).
It’s as if you were telling me to buy you a list of items from the store and you said, “I want milk, eggs, bread, and
soup.” Only as a programmer we can say, “(milk, eggs, bread, soup)” and be done with it.

We will now type in a whole bunch of strings, variables, formats, and print them. You will also practice using short
abbreviated variable names. Programmers love saving themselves time at your expense by using annoying cryptic
variable names, so lets get you started being able to read and write them early on.

1 x = "There are %d types of people." % 10
2 binary = "binary"
3 do_not = "don't"
4 y = "Those who know %s and those who %s." % (binary, do_not)
5

6 print x
7 print y
8

9 print "I said: %r." % x
10 print "I also said: '%s'." % y
11

12 hilarious = False
13 joke_evaluation = "Isn't that joke so funny?! %r"
14

15 print joke_evaluation % hilarious
16

17 w = "This is the left side of..."
18 e = "a string with a right side."
19

20 print w + e

What You Should See

$ python ex6.py
There are 10 types of people.

21

Learn Python The Hard Way, Release 0.5

Those who know binary and those who don't.
I said: 'There are 10 types of people.'.
I also said: 'Those who know binary and those who don't.'.
Isn't that joke so funny?! False
This is the left side of...a string with a right side.
$

Extra Credit

1. Go through this program and write a comment above each line explaining it.

2. Find all the places where a string is put inside a string. There are 4 places.

3. Are you sure there’s only 4 places? How do you know? Maybe I like lying.

4. Try to explain why adding the two string w and e with + makes a longer string.

22 Exercise 6: Strings And Text

Exercise 7: More Printing

We are now going to do a bunch of exercises where you just type code in and make them run. There won’t be much
talking since it’s just more of the same. The purpose is to build up your chops. See you in a few exercises, and don’t
skip! Don’t paste!

1 print "Mary had a little lamb."
2 print "Its fleece was white as %s." % 'snow'
3 print "And everywhere that Mary went."
4 print "." * 10 # what'd that do?
5

6 end1 = "C"
7 end2 = "h"
8 end3 = "e"
9 end4 = "e"

10 end5 = "s"
11 end6 = "e"
12 end7 = "B"
13 end8 = "u"
14 end9 = "r"
15 end10 = "g"
16 end11 = "e"
17 end12 = "r"
18

19 # watch that comma at the end. try removing it to see what happens
20 print end1 + end2 + end3 + end4 + end5 + end6,
21 print end7 + end8 + end9 + end10 + end11 + end12

What You Should See

$ python
Mary had a little lamb.
Its fleece was white as snow.
And everywhere that Mary went.
..........
Cheese Burger
$

Extra Credit

For these next few exercises you will have the exact same extra credit.

1. Go back through and write a comment on what each line does.

23

Learn Python The Hard Way, Release 0.5

2. Read each one backwards or out loud to find your errors.

3. From now on, when you make mistakes write down on a piece of paper what kind of mistake you made.

4. When you go to the next exercise, look at the last mistakes you made and try not to make them in this new one.

5. Remember that everyone makes mistakes. Programmers are like magicians who like everyone to think they’re
perfect and never wrong, but it’s all an act. They make mistakes all the time.

24 Exercise 7: More Printing

Exercise 8: Printing, Printing

1 formatter = "%r %r %r %r"
2

3 print formatter % (1, 2, 3, 4)
4 print formatter % ("one", "two", "three", "four")
5 print formatter % (True, False, False, True)
6 print formatter % (formatter, formatter, formatter, formatter)
7 print formatter % (
8 "I had this thing.",
9 "That you could type up right.",

10 "But it didn't sing.",
11 "So I said goodnight."
12)

What You Should See

$ python ex8.py
1 2 3 4
'one' 'two' 'three' 'four'
True False False True
'%r %r %r %r' '%r %r %r %r' '%r %r %r %r' '%r %r %r %r'
'I had this thing.' 'That you could type up right.' "But it didn't sing." 'So I said goodnight.'
$

Extra Credit

1. Do your checks of your work, write down your mistakes, try not to make them on the next exercise.

2. Notice that the last line of output uses both single and double quotes for individual pieces. Why do you think
that is?

25

Learn Python The Hard Way, Release 0.5

26 Exercise 8: Printing, Printing

Exercise 9: Printing, Printing, Printing

1 # Here's some new strange stuff, remember type it exactly.
2

3 days = "Mon Tue Wed Thu Fri Sat Sun"
4 months = "Jan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug"
5

6 print "Here's the days: ", days
7 print "Here's the months: ", months
8

9 print """
10 There's something going on here.
11 With the three double-quotes.
12 We'll be able to type as much as we like.
13 """

What You Should See

$ python ex9.py
Here's the days: Mon Tue Wed Thu Fri Sat Sun
Here's the months: Jan
Feb
Mar
Apr
May
Jun
Jul
Aug

There's something going on here.
With the three double-quotes.
We'll be able to type as much as we like.

$

Extra Credit

1. Do your checks of your work, write down your mistakes, try not to make them on the next exercise.

27

Learn Python The Hard Way, Release 0.5

28 Exercise 9: Printing, Printing, Printing

Exercise 10: What Was That?

In Exercise 9 I threw you some new stuff you haven’t seen yet, just to keep you on your toes. In that exercise I showed
you two ways to make a string that goes across multiple lines. In the first way, I put the characters \n (back-slash n)
between the names of the months. What these two characters do is put a new line character into the string at
that point.

This use of the \ (back-slash) character is a way we can put difficult to type characters into a string. There’s plenty
of these “escape sequences” available for different characters you might want to put in, but there’s a special one, the
double back-slash which is just two of them \\. These two characters will print just one back-slash. We’ll try
a few of these sequences so you can see what I mean.

Another important escape sequence is to escape a single-quote ’ or double-quote ". Imagine if you have a string that
uses double-quotes and you want to put a double-quote in for the output. If you just put one there then it’d end the
string and Python would get confused. Instead you escape it and Python knows to include in the string. Here’s an
example:

The second way is by doing the triple-quotes, which is just """ and works like a string, but what it does you can put
as many lines of text you want until you type """ again. We’ll also play with these some too.

1 tabby_cat = "\tI'm tabbed in."
2 persian_cat = "I'm split\non a line."
3 backslash_cat = "I'm \\ a \\ cat."
4

5 fat_cat = """
6 I'll do a list:
7 \t* Cat food
8 \t* Fishies
9 \t* Catnip\n\t* Grass

10 """
11

12 print tabby_cat
13 print persian_cat
14 print backslash_cat
15 print fat_cat

What You Should See

Look for the tab characters that you made. In this exercise the spacing is important to get right.

$ python ex10.py
I'm tabbed in.

I'm split
on a line.
I'm \ a \ cat.

29

Learn Python The Hard Way, Release 0.5

I'll do a list:

* Cat food

* Fishies

* Catnip

* Grass

$

Extra Credit

1. Go search online to see what other escape sequences are available.

2. Try using ”’ (triple-single-quote) instead. Can you see why you might use that instead of """?

3. Try to combine escape sequences and format strings to create a more complex format.

4. Remember the %r format? Combine %r with double-quote and single-quote escapes and print them out. Com-
pare %r with %s. Notice how %r prints it the way you’d write it in your file, but %s prints it the way you’d like
to see it?

30 Exercise 10: What Was That?

Exercise 11: Asking Questions

It’s now time to pick up the pace a bit. I’ve got you doing a lot of printing so that you get used to typing simple things,
but those simple things are fairly boring. What we want to do now is get you getting data into your programs. This
though is a little tricky so we have to have you learn to do two things that may not make sense right away, but if you
stick with it they should click suddenly a few exercises from now.

Most of what software does is the following:

1. Take some kind of input from a person.

2. Change it.

3. Print out something to show how it changed.

So far you’ve only been printing things and the basics of changing it, but you haven’t been able to get any input in.
You may not even know what “input” means, so rather than talk about it, let’s have you do some and see if you get it.
Next exercise we’ll do more to explain it.

1 print "How old are you?",
2 age = raw_input()
3 print "How tall are you?",
4 height = raw_input()
5 print "How much do you weigh?",
6 weight = raw_input()
7

8 print "So, you're %r old, %r tall and %r heavy." % (
9 age, height, weight)

Note: Notice that we put a , (comma) at the end of each print line. This is so that print doesn’t end the line
with a newline and go to the next line.

What You Should See

$ python ex11.py
How old are you? 35
How tall are you? 6'2"
How much do you weigh? 180lbs
So, you're '35' old, '6\'2"' tall and '180lbs' heavy.
$

Extra Credit

1. Go online and find out what Python’s raw_input does.

31

Learn Python The Hard Way, Release 0.5

2. Can you find other ways to use it? Try some of the samples you find.

3. Write another “form” like this to ask some other questions.

4. Related to escape sequences, try to find out why the last line has ’6\’2"’ with that \’ sequence. See how the
single-quote needs to be escaped because otherwise it would end the string?

32 Exercise 11: Asking Questions

Exercise 12: Prompting People

When you typed raw_input() you were typing the (and) characters which are parenthesis. This is similar to
when you used them to do a format with extra variables, as in "%s %s" % (x, y). For raw_input you can also
put in a prompt to show to a person. You put a string that you want for the prompt inside the () so that it looks like
this:

y = raw_input("Name? ")

Which prompts the user with “Name?” and puts the result into the variable y.

This means we can completely rewrite our previous exercise using just raw_input to do all the prompting.

1 age = raw_input("How old are you? ")
2 height = raw_input("How many tall are you? ")
3 weight = raw_input("How much do you weight? ")
4

5 print "So, you're %r old, %r tall and %r heavy." % (
6 age, height, weight)

What You Should See

$ python ex12.py
How old are you? 35
How many tall are you? 6'2"
How much do you weight? 180lbs
So, you're '35' old, '6\'2"' tall and '180lbs' heavy.
$

Extra Credit

1. In Terminal where you normally run python to run your scripts, type: pydoc raw_input. Read what it
says.

2. Go look online for what the pydoc command does.

3. Do pydoc for open, file, os, and sys. It’s alright if you don’t understand those, just read through and take
notes about interesting things.

33

Learn Python The Hard Way, Release 0.5

34 Exercise 12: Prompting People

Exercise 13: Parameters, Unpacking,
Variables

We’re slowly building up your first few input operations, so we want to cover one more input method you can use to
pass variables to a script (script being another name for your .py files). You know how you type python ex13.py
to run the ex13.py file? Well the ex13.py part of the command is called an “argument”. What we’ll do now is
write a script that also accepts arguments.

Go ahead and type this program and then I’ll explain it in detail:

1 from sys import argv
2

3 script, first, second, third = argv
4

5 print "The script is called:", script
6 print "Your first variable is:", first
7 print "Your second variable is:", second
8 print "Your third variable is:", third

On line 1 we have what’s called an “import”. This is how you add features to your script from the Python feature set.
Rather than give you all the features at once, Python asks you to say what you plan to use. This keeps your programs
small, but it also acts as documentation for other programmers who read your code later.

The argv is the “argument variable” and it’s actually a very standard name in programming. You’ll find it used in
many other languages. What this variable does is hold the arguments you pass to your Python script when you run it.
In the exercises you’ll get to play with this more and see what happens.

Line 3 “unpacks” argv so that, rather than holding all the arguments, it gets assigned to four variables you can work
with: script, first, second, and third. This may look strange, but “unpack” is probably the best word to
describe what it does. It just says, “Take whatever is in argv, unpack it, and assign it to all of these variables on the left
in order.”

After that we just print them out like normal.

Hold Up! Features Have Another Name

I call them features here, these little things you import to make your Python program do more. Nobody else calls
them features, I just used that name because I needed to trick you into learning what they are without jargon. But,
before you can continue, you need to learn their real name: modules.

We’ll be calling these “features” that we import modules from now on. I’ll say things like, “You want to import the
sys module.” They are also called “libraries” by other programmers, but let’s just stick to modules.

35

Learn Python The Hard Way, Release 0.5

What You Should See

When you run the program run it like this:

python ex13.py first 2nd 3rd

This is what you should see when you do a few different runs with different arguments:

$ python ex13.py first 2nd 3rd
The script is called: ex/ex13.py
Your first variable is: first
Your second variable is: 2nd
Your third variable is: 3rd

$ python ex13.py cheese apples bread
The script is called: ex/ex13.py
Your first variable is: cheese
Your second variable is: apples
Your third variable is: bread

$ python ex13.py Zed A. Shaw
The script is called: ex/ex13.py
Your first variable is: Zed
Your second variable is: A.
Your third variable is: Shaw

You can actually replace “first”, “2nd”, and “3rd” with any three things.

If you don’t run it correctly, then you’ll get an error like this:

Traceback (most recent call last):
File "ex/ex13.py", line 3, in <module>
script, first, second, third = argv

ValueError: need more than 3 values to unpack

This happens because you didn’t put enough arguments on the command when you ran it. Notice when I run it I gave
it first 2nd 3rd, and I could also do:

python ex13.py stuff I like
python ex13.py anything 6 7

But if I don’t give 3 arguments, I get the error, so if I do:

python ex13.py bad error
python ex13.py wrong

Extra Credit

1. Try giving less than three arguments to your script. See that error you get? See if you can explain it.

2. Write a script that has less arguments and one that has more. Make sure you give the unpacked variables good
names.

3. Combine raw_input with argv to make a script that does more input from a user.

4. Remember that modules give you features. Modules. Modules. Remember this because we’ll need it later.

36 Exercise 13: Parameters, Unpacking, Variables

Exercise 14: Prompting And Passing

Let’s do one exercise to put using argv and raw_input together to ask the user something specific. You’ll need this
for the next exercise where we learn to read and write files. In this exercise we’ll use raw_input slightly differently
by having it just print a simple > prompt. Similar to in a game like Zork or Adventure.

1 from sys import argv
2

3 script, user_name = argv
4 prompt = '> '
5

6 print "Hi %s, I'm the %s script." % (user_name, script)
7 print "I'd like to ask you a few questions."
8 print "Do you like me %s?" % user_name
9 likes = raw_input(prompt)

10

11 print "Where do you live %s?" % user_name
12 lives = raw_input(prompt)
13

14 print "What kind of computer do you have?"
15 computer = raw_input(prompt)
16

17 print """
18 Alright, so you said %r about liking me.
19 You live in %r. Not sure where that is.
20 And you have a %r computer. Nice.
21 """ % (likes, lives, computer)

Notice though that we make a variable prompt that is set to this prompt we want, and then we give that to
raw_input instead of typing it over and over. Now if we want to make the prompt something else, we just have to
change it in this one spot and rerun the script.

Very handy.

What You Should See

When you run this one, remember that you have to give the script your name for the argv arguments.

$ python ex14.py Zed
Hi Zed, I'm the ex14.py script.
I'd like to ask you a few questions.
Do you like me Zed?
> yes
Where do you live Zed?
> America
What kind of computer do you have?

37

Learn Python The Hard Way, Release 0.5

> Tandy

Alright, so you said 'yes' about liking me.
You live in 'America'. Not sure where that is.
And you have a 'Tandy' computer. Nice.

Extra Credit

1. Go find out what Zork was, and what Adventure was. See if you can find a copy and play it.

2. Change the prompt variable to something else entirely.

3. Add another argument and use it in your script.

4. Make sure you understand how I combined a """ style multi-line string with the % format activator as the last
print.

38 Exercise 14: Prompting And Passing

Exercise 15: Reading Files

Everything about raw_input and argv has been so you can start reading files. This exercise will probably be the
one you have to play with the most to understand what’s going on, so do it carefully and remember your checks.
Working with files is one way to very quickly erase your work if you’re not careful.

First, this exercise involves writing two files. One is your usual ex15.py file that you’ll run, but the other is named
ex15_sample.txt. This second file isn’t a script, but just a plain text file we’ll be reading in our script. Here’s the
contents of that file:

This is stuff I typed into a file.
It is really cool stuff.
Lots and lots of fun to have in here.

What we want to do is “open” that file in our script and print it out. However, we don’t want to just “hard code” the
name ex15_sample.txt into our script. The term “hard coding” means that we’ve put some bit of information
that should come from the user as a string right in our program. That’s bad because we want it to load other files later.
The solution is to use argv and raw_input to ask the user what file they want instead of “hard coding” the file’s
name.

1 from sys import argv
2

3 script, filename = argv
4

5 txt = open(filename)
6

7 print "Here's your file %r:" % filename
8 print txt.read()
9

10 print "I'll also ask you to type it again:"
11 file_again = raw_input("> ")
12

13 txt_again = open(file_again)
14

15 print txt_again.read()

There’s a few fancy things going on in this file, so let’s break it down real quick:

Line 1-3 should be familiar use of argv to get a filename. Next we have line 5 where we use a new command open.
Right now, go run pydoc open and read the instructions. Notice how like your own scripts and raw_input it
takes a parameter and returns a value you can set to your own variable. You just opened a file.

Line 7 we print a little line, but on line 8 we have something very new and exciting. We call a function on txt. You
see, what you got back from open is a file and it’s also got commands you can give it. You give a file a command
by using the . (dot or period), the name of the command, and parameters. Just like with open and raw_input. The
difference is that when you say txt.read() you’re saying, “Hey txt! Do your read command with no parameters!”

The remainder of the file is more of the same, but we’ll leave the analysis to you in the extra credit.

39

Learn Python The Hard Way, Release 0.5

What You Should See

I made a file called “ex15_sample.txt” and ran my script.

$ python ex15.py ex15_sample.txt
Here's your file 'ex15_sample.txt':
This is stuff I typed into a file.
It is really cool stuff.
Lots and lots of fun to have in here.

I'll also ask you to type it again:
> ex15_sample.txt
This is stuff I typed into a file.
It is really cool stuff.
Lots and lots of fun to have in here.

$

Extra Credit

This is a big jump so you want to make sure you do this extra credit as best you can before moving on.

1. Above each line write out in English what that line does.

2. If you’re not sure ask someone for help or search online. Many times searching for “python THING” will find
answers for what THING does in python. Try searching for “python open”.

3. I used the name “commands” here, but they’re also called “functions” and “methods”. Search around online
to see what other people do to define these. Don’t worry if they confuse you, it’s normal for a programmer to
confuse you with their vast extensive knowledge.

4. Get rid of the part from line 10-16 where you use raw_input and try the script then.

5. Use only raw_input and try the script that way. Think of why one way of getting the filename would be better
than another.

6. Run pydoc file and scroll down until you see the read() command (method/function). See all the other
ones you can use? Skip the ones that have __ (two underscores) in front because those are junk. Try some of
the other commands.

7. Startup python again and use open from the prompt. Notice how you can open files and run read on them
right there?

8. Have your script also do a close() on the txt and txt_again variables. It’s important to close files when
you’re done with them.

40 Exercise 15: Reading Files

Exercise 16: Reading And Writing Files

If you did the extra credit from the last exercise you should have seen all sorts of commands (methods/functions) you
can give to files. Here’s the list of commands I want you to remember:

• close – Closes the file. Like File->Save.. in your editor.

• read – Reads the contents of the file, you can assign the result to a variable.

• readline – Reads just one line of a text file.

• truncate – Empties the file, watch out if you care about the file.

• write(stuff) – Writes stuff to the file.

For now these are the important commands you need to know. Some of them take parameters, but we don’t really care
about that. You only need to remember that write takes a parameter of a string you want to write to the file.

Let’s use some of this to make a simple little text editor:

1 from sys import argv
2

3 script, filename = argv
4

5 print "We're going to erase %r." % filename
6 print "If you don't want that, hit CTRL-C (^C)."
7 print "If you do want that, hit RETURN."
8

9 raw_input("?")
10

11 print "Opening the file..."
12 target = open(filename, 'w')
13

14 print "Truncating the file. Goodbye!"
15 target.truncate()
16

17 print "Now I'm going to ask you for three lines."
18

19 line1 = raw_input("line 1: ")
20 line2 = raw_input("line 2: ")
21 line3 = raw_input("line 3: ")
22

23 print "I'm going to write these to the file."
24

25 target.write(line1)
26 target.write("\n")
27 target.write(line2)
28 target.write("\n")
29 target.write(line3)
30 target.write("\n")

41

Learn Python The Hard Way, Release 0.5

31

32 print "And finally, we close it."
33 target.close()

That’s a large file, probably the largest you’ve typed in. So go slow, do your checks, and make it run. One trick is to
get bits of it running at a time. Get lines 1-8 running, then 5 more, then a few more, etc. until it’s all done and running.

What You Should See

There are actually two things you’ll see, first the output of your new script:

$ python ex16.py test.txt
We're going to erase 'test.txt'.
If you don't want that, hit CTRL-C (^C).
If you do want that, hit RETURN.
?
Opening the file...
Truncating the file. Goodbye!
Now I'm going to ask you for three lines.
line 1: To all the people out there.
line 2: I say I don't like my hair.
line 3: I need to shave it off.
I'm going to write these to the file.
And finally, we close it.
$

Now, open up the file you made (in my case test.txt) in your editor and check it out. Neat right?

Extra Credit

1. If you feel you don’t understand this, go back through and use the comment trick to get it squared away in your
mind. One simple English comment above each line will help you understand, or at least let you know what you
need to research more.

2. Write a script similar to the last exercise that uses read and argv to read the file you just created.

3. There’s too much repetition in this file. Use strings, formats, and escapes to print out line1, line2, and
line3 with just one target.write() command instead of 6.

4. Find out why we had to pass a ’w’ as an extra parameter to open. Hint: open tries to be safe by making you
explicitly say you want to write a file.

42 Exercise 16: Reading And Writing Files

Exercise 17: More Files

Now let’s do a few more things with files. We’re going to actually write a Python script to copy one file to another.
It’ll be very short but will give you some ideas about other things you can do with files.

1 from sys import argv
2 from os.path import exists
3

4 script, from_file, to_file = argv
5

6 print "Copying from %s to %s" % (from_file, to_file)
7

8 # we could do these two on one line too, how?
9 input = open(from_file)

10 indata = input.read()
11

12 print "The input file is %d bytes long" % len(indata)
13

14 print "Does the output file exist? %r" % exists(to_file)
15 print "Ready, hit RETURN to continue, CTRL-C to abort."
16 raw_input()
17

18 output = open(to_file, 'w')
19 output.write(indata)
20

21 print "Alright, all done."

You should right away notice that we import another handy command named exists. This returns True if a file
exists, based on it’s name in a string as an argument. It returns False if not. We’ll be using this function in the second
half of this book to do lots of things, but right now you should see how you can import it.

Using import is a way to get tons of free code other better (well, usually) programmers have written so you don’t
have to write it.

What You Should See

Just like your other scripts, run this one with two arguments, the file to copy from and the file to copy it to. If we use
your test.txt file from before we get this:

$ python ex17.py test.txt copied.txt
Copying from test.txt to copied.txt
The input file is 81 bytes long
Does the output file exist? False
Ready, hit RETURN to continue, CTRL-C to abort.

Alright, all done.

43

Learn Python The Hard Way, Release 0.5

$ cat copied.txt
To all the people out there.
I say I don't like my hair.
I need to shave it off.
$

It should work with any file. Try a bunch more and see what happens. Just be careful you don’t blast an important file.

Warning: Did you see that trick I did with cat?

Extra Credit

1. Go read up on Python’s import statement, and start python to try it out. Try importing some things and see
if you can get it right. It’s alright if you don’t.

2. This script is really annoying. There’s no need to ask you before doing the copy, it prints too much out to the
screen. Try to make it more friendly to use by removing features.

3. See how short you can make the script. I could make this 1 line long.

4. Notice at the end of the WYSS I used something called cat? It’s an old comman that “con*cat*enates” files
together, but mostly it’s just an easy way to print a file to the screen. Type man cat to read about it.

44 Exercise 17: More Files

Exercise 18: Names, Variables, Code,
Functions

Big title right? I am about to introduce you to the function! Dum dum dah! Every programmer will go on and on
about functions and all the different ideas about how they work and what they do, but I will give you the simplest
explanation you can use right now.

Functions do three things:

1. They name pieces of code the way variables name strings and numbers.

2. They take arguments the way your scripts take argv.

3. Using #1 and #2 they let you make your own “mini scripts” or “tiny commands”.

How you create a function is using the word def in Python. I’m going to have you make four different functions that
work like your scripts, and then show you how each one is related.

1 # this one is like your scripts with argv
2 def print_two(*args):
3 arg1, arg2 = args
4 print "arg1: %r, arg2: %r" % (arg1, arg2)
5

6 # ok, that *args is actually pointless, we can just do this
7 def print_two_again(arg1, arg2):
8 print "arg1: %r, arg2: %r" % (arg1, arg2)
9

10 # this just takes one argument
11 def print_one(arg1):
12 print "arg1: %r" % arg1
13

14 # this one takes no arguments
15 def print_none():
16 print "I got nothin'."
17

18

19 print_two("Zed","Shaw")
20 print_two_again("Zed","Shaw")
21 print_one("First!")
22 print_none()

Let’s break down the first function, print_two which is the most similar to what you already know from making
scripts:

1. First we tell Python we want to make a function using def for “define”.

2. Still on the same line as def we then give the function a name, in this case we just called it “print_two” but it
could be “peanuts” too.

45

Learn Python The Hard Way, Release 0.5

3. Then we tell it we want *args (asterisk args) which is a lot like your argv parameter but for functions. This
has to go inside () parenthesis to work.

4. Then we end this line with a : colon, and start indenting.

5. After the colon all the lines that are indented 4 spaces will become attached to this name print_two. Our first
indented line is one that unpacks the arguments the same as with your scripts.

6. And to demonstrate how it works we print these arguments out, just like we would in a script.

Now, the problem with print_two is that it’s not the easiest way to make a function. In Python we can skip the
whole unpacking args and just use the names we want right inside (). That’s what print_two_again does.

After that you have an example of how you make a function that takes one argument in print_one.

Finally you have a functiont that has no arguments in print_none.

Warning: This is very important, don’t get discouraged right now if this doesn’t quite make sense. We’re going
to do a few exercises linking functions to your scripts and show you how to make more. For now just keep thinking
“mini script” when I say “function” and keep playing with them.

What You Should See

If you run the above script you should see:

$ python ex18.py
arg1: 'Zed', arg2: 'Shaw'
arg1: 'Zed', arg2: 'Shaw'
arg1: 'First!'
I got nothin'.
$

Right away you can see how a function works. Notice that we did with our functions what you have been doing
with things like exists, open, and other “commands”. In fact, I’ve been tricking you because in Python those
“commands” are just functions. This means that you can make your own commands and use them in your scripts too.

Extra Credit

You need to write out a function checklist for later exercises. Write these out onto an index card and keep it
by you while you complete the rest of these exercises or until you feel you don’t need it:

1. Did you start your function definition with def?

2. Does your function name have only characters and _ (underscore) characters?

3. Did you put an open parenthesis (right after the function name?

4. Did you put your arguments after the parenthesis (separated by commas?

5. Did you make each argument unique (meaning no duplicated names).

6. Did you put a close parenthesis and a colon): after the arguments?

7. Did you indent all lines of code you want in the function 4 spaces? No more, no less.

8. Did you “end” your function by going back to writing with no indent (dedenting we call it)?

And when you run (aka “use”, “call”) a function check these things:

46 Exercise 18: Names, Variables, Code, Functions

Learn Python The Hard Way, Release 0.5

1. Did you call/use/run this function by typing its name?

2. Did you put (character after the name to run it?

3. Did you put the values you want into the parenthesis separated by commas?

4. Did you end the function call with a) character.

You will use these two checklists on the remaining lessons until you don’t need them anymore.

Finally, repeat this a few times:

“To ‘run’, ‘call’, or ‘use’ a function all mean the same thing.”

Extra Credit 47

Learn Python The Hard Way, Release 0.5

48 Exercise 18: Names, Variables, Code, Functions

Exercise 19: Functions And Variables

Functions may have been a mind blowing amount of information, but don’t worry just keep doing these exercises and
going through your checklist from the last exercise and you’ll eventually get it.

There is one tiny point though that you might not have realized which we’ll reinforce right now: The variables in your
function are not connected to the variables in your script. Here’s an exercise to get you thinking about this:

1 def cheese_and_crackers(cheese_count, boxes_of_crackers):
2 print "You have %d cheeses!" % cheese_count
3 print "You have %d boxes of crackers!" % boxes_of_crackers
4 print "Man that's enough for a party!"
5 print "Get a blanket.\n"
6

7

8 print "We can just give the function numbers directly:"
9 cheese_and_crackers(20, 30)

10

11

12 print "OR, we can use variables from our script:"
13 amount_of_cheese = 10
14 amount_of_crackers = 50
15

16 cheese_and_crackers(amount_of_cheese, amount_of_crackers)
17

18

19 print "We can even do math inside too:"
20 cheese_and_crackers(10 + 20, 5 + 6)
21

22

23 print "And we can combine the two, variables and math:"
24 cheese_and_crackers(amount_of_cheese + 100, amount_of_crackers + 1000)

This shows all different ways we’re able to give our function cheese_and_crackers the values it needs to print
them. We can give it straight numbers. We can give it variables. We can give it math. We can even combine math and
variables.

In a way, the arguments to a function are kind of like our = character when we make a variable. In fact, if you can use
= to name something then you can usually pass it to a function as an argument.

What You Should See

You should study the output of this script and compare it to what you think you should get for each of the examples in
the script.

49

Learn Python The Hard Way, Release 0.5

$ python ex19.py
We can just give the function numbers directly:
You have 20 cheeses!
You have 30 boxes of crackers!
Man that's enough for a party!
Get a blanket.

OR, we can use variables from our script:
You have 10 cheeses!
You have 50 boxes of crackers!
Man that's enough for a party!
Get a blanket.

We can even to math inside too:
You have 30 cheeses!
You have 11 boxes of crackers!
Man that's enough for a party!
Get a blanket.

And we can combine the two, variables and math:
You have 110 cheeses!
You have 1050 boxes of crackers!
Man that's enough for a party!
Get a blanket.
$

Extra Credit

1. Go back through the script and type a comment above each line explaining in English what it does.

2. Start at the bottom and read each line backwards, saying all the important characters.

3. Write at least one more function of your own design, and run it 10 different ways.

50 Exercise 19: Functions And Variables

Exercise 20: Functions And Files

Remember your check list for functions, and then do this exercise paying close attention to how functions and files
can work together to make useful stuff.

1 from sys import argv
2

3 script, input_file = argv
4

5 def print_all(f):
6 print f.read()
7

8 def rewind(f):
9 f.seek(0)

10

11 def print_a_line(line_count, f):
12 print line_count, f.readline()
13

14 current_file = open(input_file)
15

16 print "First let's print the whole file:\n"
17

18 print_all(current_file)
19

20 print "Now let's rewind, kind of like a tape."
21

22 rewind(current_file)
23

24 print "Let's print three lines:"
25

26 current_line = 1
27 print_a_line(current_line, current_file)
28

29 current_line = current_line + 1
30 print_a_line(current_line, current_file)
31

32 current_line = current_line + 1
33 print_a_line(current_line, current_file)

Pay close attention to how we pass in the current line number each time we run print_a_line.

What You Should See

$ python ex20.py test.txt
First let's print the whole file:

51

Learn Python The Hard Way, Release 0.5

To all the people out there.
I say I don't like my hair.
I need to shave it off.

Now let's rewind, kind of like a tape.
Let's print three lines:
1 To all the people out there.

2 I say I don't like my hair.

3 I need to shave it off.

$

Extra Credit

1. Go through and write English comments for each line to understand what’s going on.

2. Each time print_a_line is run you are passing in a variable current_line. Write out what
current_line is equal to on each function call, and trace how it becomes line_count in
print_a_line.

4. Find each place a function is used, and go check it’s def to make sure that you are giving it the right arguments.

5. Research online what the seek function for file does. Try pydoc file and see if you can figure it out
from there.

6. Research the shorthand notation += and rewrite the script to use that.

52 Exercise 20: Functions And Files

Exercise 21: Functions Can Return
Something

You’ve been using the = character to name variables and set them to numbers or strings. We’re now going to blow
your mind again by showing you how to use = and a new Python word return to set variables to be a value from a
function. There will be one thing to pay close attention to, but first type this in:

1 def add(a, b):
2 print "ADDING %d + %d" % (a, b)
3 return a + b
4

5 def subtract(a, b):
6 print "SUBTRACTING %d - %d" % (a, b)
7 return a - b
8

9 def multiply(a, b):
10 print "MULTIPLYING %d * %d" % (a, b)
11 return a * b
12

13 def divide(a, b):
14 print "DIVIDING %d / %d" % (a, b)
15 return a / b
16

17

18 print "Let's do some math with just functions!"
19

20 age = add(30, 5)
21 height = subtract(78,4)
22 weight = multiply(90, 2)
23 iq = divide(100, 2)
24

25 print "Age: %d, Height: %d, Weight: %d, IQ: %d" % (age, height, weight, iq)
26

27

28 # A puzzle for the extra credit, type it in anyway.
29 print "Here is a puzzle."
30

31 what = add(age, subtract(height, multiply(weight, divide(iq, 2))))
32

33 print "That becomes: ", what, "Can you do it by hand?"

We are now doing our own math functions for add, subtract, multiply, and divide. The important thing to
notice is the last line where we say return a + b (in add). What this does is the following:

1. Our function is called with two arguments: a and b.

2. We print out what our function is doing, in this case “ADDING”.

53

Learn Python The Hard Way, Release 0.5

3. Then we tell Python to do something kind of backwards, we return the addition of a + b. You might say this
as, “I add a and b then return them.”

4. Python adds the two numbers, and then when the function ends any line that runs it will be able to assign this a
+ b result to a variable.

As with many other things in this book, you should take this real slow, break it down and try trace what’s going on. To
help there’s extra credit to get you to solve a puzzle and learn something cool.

What You Should See

$ python ex21.py
Let's do some math with just functions!
ADDING 30 + 5
SUBTRACTING 78 - 4
MULTIPLYING 90 * 2
DIVIDING 100 / 2
Age: 35, Height: 74, Weight: 180, IQ: 50
Here is a puzzle.
DIVIDING 50 / 2
MULTIPLYING 180 * 25
SUBTRACTING 74 - 4500
ADDING 35 + -4426
That becomes: -4391 Can you do it by hand?
$

Extra Credit

1. If you aren’t really sure what return does, try writing a few of your own functions and have them return some
values. You can return anything that you can put to the right of an =.

2. At the end of the script is a puzzle. I’m taking the return value of one function, and using it as the argument of
another function. I’m doing this in a chain so that I’m kind of creating a formula using the functios. It looks
really weird, but if you ran the script you can see the results. What you should do is try to figure out the normal
formula that would recreate this same set of operations.

3. Once you have the formula worked out for the puzzle, get in there and see what happens when you modify the
parts of the functions. Try to change it on purpose to make another value.

4. Finally, do the inverse, write out a simple formula and use the functions in the same way to calculate it. First do
it with variables then with functions called as arguments to functions.

This exercise might really whack your brain out, but take it slow and easy and treat it like a little game. Figuring things
like this out is almost all of the fun there is in programming, so I’ll be giving you more little problems like this as we
go.

54 Exercise 21: Functions Can Return Something

Exercise 22: What Do You Know So Far?

There won’t be any code in this exercise or the next one, so there’s no WYSS or Extra Credit either. In fact, this
exercise is like one giant Extra Credit. I’m going to have you do a form of review on what you should know so far in
order to help lock in what you’ve learned so far.

First, you should go back through every exercise you’ve done so far and write down every word and symbol (another
name for ‘character’) that you’ve used. Make sure your list of symbols is complete and you don’t miss any.

Next to each word or symbol you should write its name, and what it does. If you can’t find a name for a symbol in this
book, then look online for it. If you don’t know what something does, go read about it again and try using it again in
some code. Make sure you know.

You may run into a few things you just can’t find out or know, so just keep those on the list and be ready to look them
up when you find them.

Once you have your list, spend a few days rewriting the list and double checking that it’s correct. This may get boring
but push through and really nail it down.

If you think you’ve memorized the list and what they do, then you should step it up and do this:

1. Take a blank sheet of paper and try to write down as many symbols and words as you can from memory.

2. Compare what you could recall from memory to what was listed on your sheet, fill in the rest.

3. Write down the names from memory of all the symbols you can. 3. Again go look at your list and compare them,
correcting any and filling in the remaining

ones you didn’t remember.

4. Finally do the same for what each symbol does: write them from memory and then fill in the ones you don’t
remember or get wrong using your sheet.

Warning: The most important thing when doing this exercise is: “There is no failure, only trying.”

What You’re Learning

It’s important when you’re doing a boring mindless memorization exercise like this that you know why. It helps you
focus on a goal and know the purpose of all your efforts.

In this exercise you’re learning a vocabulary. You’re learning the names of symbols so that you can read source code
more easily than if you didn’t know them. It’s similar to learning the alphabet, except the alphabet has extra symbols
you might not know.

The technique you’re also learning will help you memorize things. A good trick is to try to recall what you can from
memory, and then fill in the rest of the ones you don’t know to then memorize again. Doing it this way you develop

55

Learn Python The Hard Way, Release 0.5

memory skills that don’t require you to have a “trigger” to remember what something is and makes it a more natural
piece of knowledge.

Finally, just take it slow and don’t hurt your brain. Hopefully by now these symbols are natural for you so this isn’t a
big effort. It’s best to take 15 minutes at a time with your list and then take a break. Giving your brain a rest will help
you learn it faster with less frustration.

56 Exercise 22: What Do You Know So Far?

Exercise 23: Read Some Code

You should have spent last week getting your list of symbols straight and get them locked into your mind. Now you
get to apply this to another week reading code on the internet. This exercise will be daunting at first. I’m going to
throw you in the deep end for a few days and have you just try your best to read and understand some source code
from real projects. The goal isn’t to get you to understand code, but to teach you the following three skills:

1. Finding Python source code for things you need.

2. Reading through the code and looking for files.

3. Trying to understand code you find.

At your level you really don’t have the skills to evaluate the things you find, but you can benefit from getting exposure
to it and seeing how things look.

When you do this exercise, think of yourself as an anthropologist, trucking through a new land with just barely enough
of the local language to get around and see survive. Except, of course, that you’ll actually get out alive because the
internet isn’t a jungle. Anyway.

Here’s what you do:

1. Go to bitbucket.org and search for “python”.

2. Avoid any project with “Python 3” mentioned. That’ll only confuse you.

3. Take a random project you find, and click on it.

4. Click on the Source tab and browse through the list of files and directories until you find a .py file (but not
setup.py, that’s useless).

5. Start at the top, and read through it, taking notes on what you think it does.

6. If any symbols or strange words seem to interest you, write them down to research later.

That’s it. Your job is to use what you know so far to see if you can read the code and get a grasp of what it does.
You should try to do it first by skimming, and then by reading in detail anything you find. Maybe also try taking very
difficult parts and reading each symbol you know outloud.

You should then try several three other sites:

• github.com

• launchpad.net

• koders.com

On each of these sites you may find weird files ending in .c so stick to .py files like the ones you have written in this
book.

A final fun thing to do is use the above four sources of Python code and type in topics you’re interested in instead of
“python”. Search for “journalism”, “cooking”, “physics”, or anything you’re curious about. Chances are there’s some
code out there that someone wrote you could use right away.

57

Learn Python The Hard Way, Release 0.5

58 Exercise 23: Read Some Code

Exercise 24: More Practice

We’re coming to the end of this section, where you should have enough Python “under your fingers” to move onto
learning about how programming really works, but you should do some more practice. This exercise is longer and all
about building up stamina. The next exercise will be similar. Do them, get them exactly right, and do your checks.

1 print "Let's practice everything."
2 print 'You\'d need to know \'bout escapes with \\ that do \n newlines and \t tabs.'
3

4 poem = """
5 \tThe lovely world
6 with logic so firmly planted
7 cannot discern \n the needs of love
8 nor comprehend passion from intuition
9 and requires an explantion

10 \n\t\twhere there is none.
11 """
12

13 print "--------------"
14 print poem
15 print "--------------"
16

17

18 five = 10 - 2 + 3 - 6
19 print "This should be five: %s" % five
20

21 def secret_formula(started):
22 jelly_beans = started * 500
23 jars = jelly_beans / 1000
24 crates = jars / 100
25 return jelly_beans, jars, crates
26

27

28 start_point = 10000
29 beans, jars, crates = secret_formula(start_point)
30

31 print "With a starting point of: %d" % start_point
32 print "We'd have %d beans, %d jars, and %d crates." % (beans, jars, crates)
33

34 start_point = start_point / 10
35

36 print "We can also do that this way:"
37 print "We'd have %d beans, %d jars, and %d crates." % secret_formula(start_point)

59

Learn Python The Hard Way, Release 0.5

What You Should See

$ python ex24.py
Let's practice everything.
You'd need to know 'bout escapes with \ that do
newlines and tabs.

The lovely world
with logic so firmly planted
cannot discern
the needs of love

nor comprehend passion from intuition
and requires an explantion

where there is none.

This should be five: 5
With a starting point of: 10000
We'd have 5000000 beans, 5000 jars, and 50 crates.
We can also do that this way:
We'd have 500000 beans, 500 jars, and 5 crates.
$

Extra Credit

1. Make sure to do your checks: read it backwards, read it out loud, put comments above confusing parts.

2. Break the file on purpose then run it to see what kinds of errors you get. Make sure you can fix it.

60 Exercise 24: More Practice

Exercise 25: Even More Practice

We’re going to do some more practice involving functions and variables to make sure you know them well. This
exercise should be straight forward for you to type in and you should be able to break it down and understand it.

However, this exercise is a little different. You won’t be running it, but instead you will import it into your python and
run the functions yourself.

1 def break_words(stuff):
2 """This function will break up words for us."""
3 words = stuff.split(' ')
4 return words
5

6 def sort_words(words):
7 """Sorts the words."""
8 return sorted(words)
9

10 def print_first_word(words):
11 """Prints the first word after popping it off."""
12 word = words.pop(0)
13 print word
14

15 def print_last_word(words):
16 """Prints the last word after popping it off."""
17 word = words.pop(-1)
18 print word
19

20 def sort_sentence(sentence):
21 """Takes in a full sentence and returns the sorted words."""
22 words = break_words(sentence)
23 return sort_words(words)
24

25 def print_first_and_last(sentence):
26 """Prints the first and last words of the sentence."""
27 words = break_words(sentence)
28 print_first_word(words)
29 print_last_word(words)
30

31 def print_first_and_last_sorted(sentence):
32 """Sorts the words then prints the first and last one."""
33 words = sort_sentence(sentence)
34 print_first_word(words)
35 print_last_word(words)

First thing you should do is run this like normal with python ex25.py to find any errors you’ve made. Once you’ve
found all of the errors you can this way and fixed them, you’ll then want to follow the WYSS section to complete the
exercise.

61

Learn Python The Hard Way, Release 0.5

What You Should See

In this exercise we’re going to interact with your .py file inside the python interpreter you used periodically to do
calculations.

Here’s what it looks like when I do it:

1 $ python
2 Python 2.5.1 (r251:54863, Feb 6 2009, 19:02:12)
3 [GCC 4.0.1 (Apple Inc. build 5465)] on darwin
4 Type "help", "copyright", "credits" or "license" for more information.
5 >>> import ex25
6 >>> sentence = "All good things come to those who wait."
7 >>> words = ex25.break_words(sentence)
8 >>> words
9 ['All', 'good', 'things', 'come', 'to', 'those', 'who', 'wait.']

10 >>> sorted_words = ex25.sort_words(words)
11 >>> sorted_words
12 ['All', 'come', 'good', 'things', 'those', 'to', 'wait.', 'who']
13 >>> ex25.print_first_word(words)
14 All
15 >>> ex25.print_last_word(words)
16 wait.
17 >>> wrods
18 Traceback (most recent call last):
19 File "<stdin>", line 1, in <module>
20 NameError: name 'wrods' is not defined
21 >>> words
22 ['good', 'things', 'come', 'to', 'those', 'who']
23 >>> ex25.print_first_word(sorted_words)
24 All
25 >>> ex25.print_last_word(sorted_words)
26 who
27 >>> sorted_words
28 ['come', 'good', 'things', 'those', 'to', 'wait.']
29 >>> sorted_words = ex25.sort_sentence(sentence)
30 >>> sorted_words
31 ['All', 'come', 'good', 'things', 'those', 'to', 'wait.', 'who']
32 >>> ex25.print_first_and_last(sentence)
33 All
34 wait.
35 >>> ex25.print_first_and_last_sorted(sentence)
36 All
37 who
38 >>> ^D
39 $

Let’s break this down line by line to make sure you know what’s going on:

• Line 5 you import your ex25.py python file, just other imports you’ve done. Notice you don’t need to put the
.py at the end to import it. When you do this you make a module that has all your functions in it to use.

• Line 6 you made a sentence to work with.

• Line 7 you use the ex25 module and call your first function ex25.break_words. The . (dot, period)
symbol is how you tell python, “Hey, inside ex25 there’s a function called break_words and I want to run
it.”

• line 8 we just type words and python will print out what’s in that variable (line 9). It looks weird but this is a
list, you’ll learn about that later.

62 Exercise 25: Even More Practice

Learn Python The Hard Way, Release 0.5

• Lines 10-11 we do the same thing with ex25.sort_words to get a sorted sentence.

• Lines 13-16 we use ex25.print_first_word and ex25.print_last_word to get the first and last
word printed out.

• Line 17 is interesting. I made a mistake and typed the words variable as wrods so python gave me an error
on Lines 18-20.

• Line 21-22 is where we print the modified words list, notice that since we printed the first and last one those
words are now missing.

The remaining lines are for you to figure out and analyze in the extra credit.

Extra Credit

1. Take the remaining lines of the WYSS output and figure out what they’re doing. Make sure you understand how
you are running your functions in the ex25 module.

2. Try doing this: help(ex25) and also help(ex25.break_words). Notice how you get help for your
module, and also notice how the help is those odd """ strings you put after each function in ex25? Those
special strings are called documentation comments and we’ll be seeing more of them.

3. Type ex25. is annoying, so a shortcut is do your import like this: from ex25 import * which is like
saying, “Import everything from ex25.” Programmers like saying things backwards. Start a new session and see
how all your functions are right there now.

4. Try breaking your file and see what it looks like in python when you use it. You will have to quit python with
CTRL-D (CTRL-Z on windows) to be able to reload it.

Extra Credit 63

Learn Python The Hard Way, Release 0.5

64 Exercise 25: Even More Practice

Exercise 26: Congratulations, Take A Test!

You are almost done with the first half of the book. The second half will start teaching you logic where things become
more interesting and you’ll start to be able to do useful things.

Before you continue though, I have a quiz for you. This quiz will be very hard because it requires you to fix someone
else’s code. When you’re a programmer you have to deal with other programmer’s code, and also with their arrogance.
They will very frequently claim that their code is perfect. Despite all of the obvious flaws in what they’ve written, it
couldn’t possibly be anything they’ve written.

These programmers are stupid people who care little for others. A good programmer assumes, like a good scientist,
that there’s always some probability their code is wrong. Good programmers start from the premise that their software
is broken and then work to rule out all possible ways it could be wrong before finally admitting that maybe it really is
the other guy’s code.

In this exercise, you will practice dealing with a bad programmer by fixing a bad programmer’s code. I have poorly
copied exercises 24 and 25 into a file and then removed random characters and added flaws. Most of the errors are
things Python will tell you, some of them are math errors you should find. Others are formatting errors or spelling
mistakes in the strings.

All of them are very common errors programmers make. Even experienced ones.

Your job in this exercise is to correct this file. Use all of your skills to make this file better. Analyze it first, maybe
printing it out to edit it like you would a school term paper. Fix each flaw and keep running it and fixing it until you
can. Try not to get help, and instead if you get stuck take a break and come back to it later.

Even if this takes days to do, bust through it and make it right.

Finally, the point of this exercise isn’t to type it in, but to fix an existing file. To do that, you must go to:

• http://learnpythonthehardway.com/wiki?name=Exercise26

With your web browser, and copy-paste the code into a file to work on name ex26.py.

65

http://learnpythonthehardway.com/wiki?name=Exercise26

Learn Python The Hard Way, Release 0.5

66 Exercise 26: Congratulations, Take A Test!

Exercise 27: Memorizing Logic

Today is the day you start learning about logic. Up to this point you have done everything you possibly can reading
and writing files, to the terminal, and have learned quite a lot of the math capabilities of Python.

From now on though, you will be learning about logic, but just enough logic to be dangerous. You won’t learn complex
theories that academics love to study, but instead just the simple basic logic that makes real programs work and that
real programmers need every day.

However, learning logic has to come after you do some memorization. I want you to do this exercise for an entire
week. Do not falter. Even if you are bored out of your mind, keep doing it. This exercise has a set of logic tables you
must memorize to make it easier for you to do the later exercises.

I’m warning you this won’t be fun at first. It will be downright boring and tedious but this is to teach you a very
important skill you’ll need as a programmer. You will need to be able to memorize important concepts as you go in
your life. Most of these concepts will be exciting once you get them. You’ll struggle with them, like wrestling a squid,
then one day snap you’ll understand it. All that work memorizing the basics pays off big later.

Here’s a tip on how to memorize something without going insane: Do it a little tiny bit at a time throughout the day
and mark down what you need to work on most. Don’t try to sit down for 2 hours straight and memorize these tables
as that won’t work. Your brain will really only retain whatever you studied in the first 15 or 30 minutes anyway.

Instead, what you should do is create a bunch of index cards with each column on the left on one side (True or False)
and the column on the right on the back. You should then pull them out, see the “True or False” and be able to
immediately say “True!” Keep practicing until you can do this.

Once you can do that, start writing out your own truth tables each night into a notebook. Don’t just copy them, but
instead try to do them from memory, and when you get stuck glance quickly at the ones I have here to refresh your
memory. Doing this will train your brain to remember the whole table.

Don’t spend more than one week on this, because you’ll be applying it as you go. You might want to keep your index
cards as a “warm up” before you sit down to do further exercises though.

The Truth Terms

In python we have the following terms (characters and phrases) for determining if something is “True” or “False”.
Logic on a computer is all about seeing if some combination of these characters and some variables is True at that
point in the program.

• and

• or

• not

• != (not equal)

• == (equal)

67

Learn Python The Hard Way, Release 0.5

• >= (greater-than-equal)

• <= (less-than-equal)

• True

• False

You actually have run into these characters before, but maybe not the phrases. The phrases (and, or, not) actually work
the way you expect them to, just like in English.

The Truth Tables

We will now use these characters to make the truth tables you need to memorize.

NOT True?
not False True
not True False

OR True?
True or False True
True or True True
False or True True
False or False False

AND True?
True and False False
True and True True
False and True False
False and False False

NOT OR True?
not (True or False) False
not (True or True) False
not (False or True) False
not (False or False) True

NOT AND True?
not (True and False) True
not (True and True) False
not (False and True) True
not (False and False) True

!= True?
1 != 0 True
1 != 1 False
0 != 1 True
0 != 0 False

== True?
1 == 0 False
1 == 1 True
0 == 1 False
0 == 0 True

Now use these tables to write up your own cards and spend the week memorizing them. Remember though, there is
no failing in this book, just trying as hard as you can each day, and then a little bit more.

68 Exercise 27: Memorizing Logic

Exercise 28: Boolean Practice

The logic combinations you learned from the last exercise are called “boolean” logic expressions. They’re named
after George Boole who invented the concepts and they’re are used everywhere in programming. They are essential
fundamental parts of computation and knowing them very well is akin to knowing your scales in music, or knowing
your stances in Karate.

In this exercise you’ll be taking the logic exercises you memorized and start trying them out in python. Take each
of these logic problems, and write out what you think the answer will be. In each case it will be either True, or it will
be False. Once you have the answers written down, you’ll start python in your terminal and type them in to confirm
your answers.

1. True and True

2. False and True

3. 1 == 1 and 2 == 1

4. "test" == "test"

5. 1 == 1 or 2 != 1

6. True and 1 == 1

7. False and 0 != 0

8. True or 1 == 1

9. "test" == "testing"

10. 1 != 0 and 2 == 1

11. "test" != "testing"

12. "test" == 1

13. not (True and False)

14. not (1 == 1 and 0 != 1)

15. not (10 == 1 or 1000 == 1000)

16. not (1 != 10 or 3 == 4)

17. not ("testing" == "testing" and "Zed" == "Cool Guy")

18. 1 == 1 and not ("testing" == 1 or 1 == 0)

19. "chunky" == "bacon" and not (3 == 4 or 3 == 3)

20. 3 == 3 and not ("testing" == "testing" or "Python" == "Fun")

I will also give you a trick to help you figure out the more complicated ones toward the end. Whenever you see these
boolean logic statements, you can solve them easily by this simple process:

69

Learn Python The Hard Way, Release 0.5

1. Find equality test (== or !=) and replace it with its truth.

2. Find each and/or inside a parenthesis and solve those first.

3. Find each not and invert it.

4. Find any remaining and/or and solve it.

5. When you’re done you should have True or False.

I will demonstrate with a variation on #20:

3 != 4 and not ("testing" != "test" or "Python" == "Python")

Here’s me going through each of the steps and showing you the translation until I’ve boiled it down to a single result:

1. Solve each equality test:

(a) 3 != 4 is True: True and not ("testing" != "test" or "Python" ==
"Python")

(b) "testing" != "test" is True: True and not (True or "Python" ==
"Python")

(c) "Python" == "Python": True and not (True or True)

2. Find each and/or in parenthesis ():

(a) (True or True) is True: True and not (True)

3. Find each not and invert it:

(a) not (True) is False: True and False

4. Find any remaining and/or and solve them:

(a) True and False is False

With that we’re done and know the result is False.

Warning: The more complicated ones may seem very hard at first. You should be able to give a good first stab at
solving them, but don’t get discouraged. I’m just getting you primed for more of these “logic gymnastics” so that
later cool stuff is much much easier. Just stick with it, keep track of what you get wrong, but don’t worry that it’s
not getting in your head quite yet. It’ll come.

What You Should See

After you’ve tried to guess at these this is what your session with python might look like:

$ python
Python 2.5.1 (r251:54863, Feb 6 2009, 19:02:12)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> True and True
True
>>> 1 == 1 and 2 == 2
True

70 Exercise 28: Boolean Practice

Learn Python The Hard Way, Release 0.5

Extra Credit

1. There’s a lot of operators in Python similar to != and ==. Try to find out as many “equality operators” as you
can. They should be like: < or <=.

2. Write out the names of each of these equality operators. For example, I call != “not equal”.

3. Play with the python by typing out new boolean operators, and before you hit enter try to just shout out what
it is. Don’t think about it, just the first thing that comes to mind. Write it down then hit enter, and keep track of
how many you get right and wrong.

4. Throw that piece of paper from #3 away so you don’t accidentally try to use it later.

Extra Credit 71

Learn Python The Hard Way, Release 0.5

72 Exercise 28: Boolean Practice

Exercise 29: What If

Here is the next script of Python you’ll enter, which introduces you to the if-statement. Type this in, make it run
exactly right and then we’ll try see if your practice has paid off.

1 people = 20
2 cats = 30
3 dogs = 15
4

5

6 if people < cats:
7 print "Too many cats! The world is doomed!"
8

9 if people > cats:
10 print "Not many cats! The world is saved!"
11

12 if people < dogs:
13 print "The world is drooled on!"
14

15 if people > dogs:
16 print "The world is dry!"
17

18

19 dogs += 5
20

21 if people >= dogs:
22 print "People are greater than equal to dogs."
23

24 if people <= dogs:
25 print "People are less than equal to dogs."
26

27

28 if people == dogs:
29 print "People are dogs."

What You Should See

$ python ex29.py
Too many cats! The world is doomed!
The world is dry!
People are greater than equal to dogs.
People are less than equal to dogs.
People are dogs.
$

73

Learn Python The Hard Way, Release 0.5

Extra Credit

In this extra credit, you’re going to try to guess what you think the if-statement is and what it does. Try to answer
these questions in your own words before moving on to the next exercise:

1. What do you think the if does to the code under it?

2. Why does the code under the if need to be indented 4 spaces?

3. What happens if it isn’t indented?

4. Can you put other boolean expressions from Ex. 26 in the if-statement? Try it.

5. What happens if you change the initial variables for people, cats, and dogs?

74 Exercise 29: What If

Exercise 30: Else And If

In the last exercise you worked out some if-statements, and then tried to guess at what they are and how they
work. Before you learn more I’ll explain what everything is that you saw by answering the questions you had from
extra credit. You did the extra credit right?

1. What do you think the if does to the code under it? An if statement creates what is called a “branch” in the
code. It’s kind of like those choose your own adventure books where you are asked to turn to one page if you
make one choice, and another if you go a different direction. The if-statement tells your script mostly
what it says, “If this boolean expression is True, then run the code under it, otherwise skip it.”

2. Why does the code under the if need to be indented 4 spaces? A colon at the end of a line is how you tell
Python you’re going to create a new “block” of code, and then indenting 4 spaces tells Python what lines of
code are in that block. This is exactly the same thing you did when you made functions in the first half of the
book.

3. What happens if it isn’t indented? If it isn’t indented, then you’ll most likely create a Python error. Python
expects you to indent something after you and a line with a : (colon).

4. Can you put other boolean expressions from Ex. 26 in the if statement? Try it. Yes you can, and they can be
as complex as you like, although really complex things generally are bad style.

5. What happens if you change the initial variables for people, cats, and dogs? Because you’re comparing
numbers, if you change the numbers then different if-statements will evaluate to True and the blocks of
code under them will run. Go back and put different numbers in and then see if you can figure out in your head
what blocks of code will run.

Compare my answers to your answers, and make sure you really understand the concept of a “block” of code. This is
important for when you do this next exercise where you write all the parts of if-statements that you can use.

Type this one in and make it work too.

1 people = 30
2 cars = 40
3 buses = 15
4

5

6 if cars > people:
7 print "We should take the cars."
8 elif cars < people:
9 print "We should not take the cars."

10 else:
11 print "We can't decide."
12

13 if buses > cars:
14 print "That's too many buses."
15 elif buses < cars:
16 print "Maybe we could take the buses."
17 else:

75

Learn Python The Hard Way, Release 0.5

18 print "We still can't decide."
19

20 if people > buses:
21 print "Alright, let's just take the buses."
22 else:
23 print "Fine, let's stay home then."

What You Should See

$ python ex.py
We should take the cars.
Maybe we could take the buses.
Alright, let's just take the buses.
$

Extra Credit

1. Try to guess what elif and else are doing.

2. Change the numbers of cars, people, and buses and then trace through each if-statement to see what
will be printed.

3. Try some more complex boolean expressions like cars > people and buses < cars.

4. Above each line write an English description of what the line does.

76 Exercise 30: Else And If

Exercise 31: Making Decisions

In the first half of this book you mostly just printed out things and called functions, but everything was basically in
a straight line. Your scripts ran starting at the top, and went to the bottom where they ended. Sure, if you made a
function then you could run that function later, but it still didn’t have the same kind of branching you need to really
make decisions. Now that you have if, else, and elif you can start to make scripts that decide things.

In the last script you wrote out a simple set of tests asking some questions. In this script you will ask the user questions
and make decisions based on their answers. Write this script and then play with it quite a lot to figure it out.

1 print "You enter a dark room with two doors. Do you go through door #1 or door #2?"
2

3 door = raw_input("> ")
4

5 if door == "1":
6 print "There's a giant bear here eating a cheese cake. What do you do?"
7 print "1. Take the cake."
8 print "2. Scream at the bear."
9

10 bear = raw_input("> ")
11

12 if bear == "1":
13 print "The bear eats your face off. Good job!"
14 elif bear == "2":
15 print "The bear eats your legs off. Good job!"
16 else:
17 print "Well, doing %s is probably better. Bear runs away." % bear
18

19 elif door == "2":
20 print "You stare into the endless abyss at Cthuhlu's retina."
21 print "1. Blueberries."
22 print "2. Yellow jacket clothespins."
23 print "3. Understanding revolvers yelling melodies."
24

25 insanity = raw_input("> ")
26

27 if insanity == "1" or insanity == "2":
28 print "Your body survives powered by a mind of jello. Good job!"
29 else:
30 print "The insanity rots your eyes into a pool of muck. Good job!"
31

32 else:
33 print "You stumble around and fall on a knife and die. Good job!"

A key point here is that you are now putting the if-statements inside if-statements as code that can run.
This is very powerful, and can be used to create these “nested” decisions, where one branch leads to another and
another.

77

Learn Python The Hard Way, Release 0.5

Make sure you try to understand this concept of if-statements inside if-statements. In fact, do the extra credit to really
nail it.

What You Should See

Here is me playing this little adventure game. I don’t do so well.

$ python ex31.py
You enter a dark room with two doors. Do you go through door #1 or door #2?
> 1
There's a giant bear here eating a cheese cake. What do you do?
1. Take the cake.
2. Scream at the bear.
> 2
The bear eats your legs off. Good job!

$ python ex31.py
You enter a dark room with two doors. Do you go through door #1 or door #2?
> 1
There's a giant bear here eating a cheese cake. What do you do?
1. Take the cake.
2. Scream at the bear.
> 1
The bear eats your face off. Good job!

$ python ex31.py
You enter a dark room with two doors. Do you go through door #1 or door #2?
> 2
You stare into the endless abyss at Cthuhlu's retina.
1. Blueberries.
2. Yellow jacket clothespins.
3. Understanding revolvers yelling melodies.
> 1
Your body survives powered by a mind of jello. Good job!

$ python ex31.py
You enter a dark room with two doors. Do you go through door #1 or door #2?
> 2
You stare into the endless abyss at Cthuhlu's retina.
1. Blueberries.
2. Yellow jacket clothespins.
3. Understanding revolvers yelling melodies.
> 3
The insanity rots your eyes into a pool of muck. Good job!

$ python ex31.py
You enter a dark room with two doors. Do you go through door #1 or door #2?
> stuff
You stumble around and fall on a knife and die. Good job!

$ python ex31.py
You enter a dark room with two doors. Do you go through door #1 or door #2?
> 1
There's a giant bear here eating a cheese cake. What do you do?
1. Take the cake.
2. Scream at the bear.

78 Exercise 31: Making Decisions

Learn Python The Hard Way, Release 0.5

> apples
Well, doing apples is probably better. Bear runs away.

Extra Credit

The only extra credit, is you should make new parts of the game and change what decisions people can make. Expand
the game out as much as you can before it gets ridiculous.

Extra Credit 79

Learn Python The Hard Way, Release 0.5

80 Exercise 31: Making Decisions

Exercise 32: Loops And Lists

You should now be able to do some programs that are much more interesting than before. If you’ve been keeping up
you should realize that now you can combine all the other things you’ve learned with if-statements and boolean
expressions to make your programs do smart things.

However, programs also need to do repetitive things very quickly. We are going to use a for-loop in this exercise
to build and print various lists. When you do the exercise you’ll start to figure out what they are. I won’t tell you right
now, you have to figure it out.

Before you can use a for-loop, you need a way to store the results of loops somewhere, and the best way to do that
is with a list. A list is exactly what its name says, a container of things that are organized in order. A list. It’s not
complicated, you just have to learn a new syntax. First, there’s how you make a list:

hairs = ['brown', 'blond', 'red']
eyes = ['brown', 'blue', 'green']
weights = [1, 2, 3, 4]

What you do is start the list with the [(left-bracket) which “opens” the list. Then you put each item you want in the
list separated by commas, just like when you did function arguments. Lastly you end the list with a] (right-bracket)
to indicate that it’s over. Python then takes this list, and all its contents, and assigns them to the variable.

Warning: Now, this is where things get tricky for people who can’t program. Your brain has been taught that
the world is flat. Remember in the last exercise where you put if-statements inside if-statements?
That probably made your brain hurt because most people don’t ponder how to “nest” things inside things. In
programming this is all over the place. You’ll find functions that call other functions that have if-statements
that have lists with lists inside lists. If you see a structure like this that you can’t figure out, take out pencil and
paper and break it down manually bit by bit until you understand it.

We now will build some lists using some loops and print them out:

1 the_count = [1, 2, 3, 4, 5]
2 fruits = ['apples', 'oranges', 'pears', 'apricots']
3 change = [1, 'pennies', 2, 'dimes', 3, 'quarters']
4

5 # this first kind of for-loop goes through a list
6 for number in the_count:
7 print "This is count %d" % number
8

9 # same as above
10 for fruit in fruits:
11 print "A fruit of type: %s" % fruit
12

13 # also we can go through mixed lists too
14 # notice we have to use %r since we don't know what's in it
15 for i in change:
16 print "I got %r" % i

81

Learn Python The Hard Way, Release 0.5

17

18 # we can also build lists, first start with an empty one
19 elements = []
20

21 # then use the range function to do 0 to 20 counts
22 for i in range(0, 6):
23 print "Adding %d to the list." % i
24 # append is a function that lists understand
25 elements.append(i)
26

27 # now we can print them out too
28 for i in elements:
29 print "Element was: %d" % i

What You Should See

$ python ex32.py
This is count 1
This is count 2
This is count 3
This is count 4
This is count 5
A fruit of type: apples
A fruit of type: oranges
A fruit of type: pears
A fruit of type: apricots
I got 1
I got 'pennies'
I got 2
I got 'dimes'
I got 3
I got 'quarters'
Adding 0 to the list.
Adding 1 to the list.
Adding 2 to the list.
Adding 3 to the list.
Adding 4 to the list.
Adding 5 to the list.
Element was: 0
Element was: 1
Element was: 2
Element was: 3
Element was: 4
Element was: 5
$

Extra Credit

1. Take a look at how you used range. Go look up the range function to understand it.

2. Could you have avoided that for-loop entirely on line 23 and just assigned range(0,6) directly to
elements?

82 Exercise 32: Loops And Lists

Learn Python The Hard Way, Release 0.5

3. Go find the Python documentation on lists and read about them. What other operations can you do to lists
besides append?

Extra Credit 83

Learn Python The Hard Way, Release 0.5

84 Exercise 32: Loops And Lists

Exercise 33: While Loops

Now to totally blow your mind with a new loop, the while-loop. What this kind of loop does is as long as a boolean
expression is True it will keep executing the code block under it...

Wait, you’ve been keeping up with the terminology right? That if we write a line and end it with a : (colon) then that
tells Python to start a new block of code? Then we indent and that’s the new code. This is all about structuring your
programs so that Python knows what you mean. If you don’t get that idea then go back and do some more work with
if-statements, functions, and the for-loop until you get it.

Later on we’ll have some exercises that will train your brain to read these structures, similar to how we burned boolean
expressions into your brain.

Back to while-loops, what they do is simply do a test like an if-statement, but instead of running the code
block once it jumps from back to the “top” where the while is, and does the check again. Then it keeps doing this
loop until the expression is False.

Here’s the problem with while-loops: Sometimes they just don’t stop. They’re great if that’s your intention, to just
keep looping processing things until the end of the universe. If you want to stop though, then you can cause problems.
To avoid these problems, there’s some rules to follow:

1. Make sure that you use while-loops sparingly. Usually a for-loop is better.

2. Review your while statements and make sure that the thing your testing will become False at some point later.

3. When is doubt, print out your test variable at the top and bottom of the while-loop to see what it’s doing.

In this exercise, you’ll learn the while-loop by doing the above three things:

1 i = 0
2 numbers = []
3

4 while i < 6:
5 print "At the top i is %d" % i
6 numbers.append(i)
7

8 i = i + 1
9 print "Numbers now: ", numbers

10 print "At the bottom i is %d" % i
11

12

13 print "The numbers: "
14

15 for num in numbers:
16 print num

85

Learn Python The Hard Way, Release 0.5

What You Should See

$ python ex.py
At the top i is 0
Numbers now: [0]
At the bottom i is 1
At the top i is 1
Numbers now: [0, 1]
At the bottom i is 2
At the top i is 2
Numbers now: [0, 1, 2]
At the bottom i is 3
At the top i is 3
Numbers now: [0, 1, 2, 3]
At the bottom i is 4
At the top i is 4
Numbers now: [0, 1, 2, 3, 4]
At the bottom i is 5
At the top i is 5
Numbers now: [0, 1, 2, 3, 4, 5]
At the bottom i is 6
The numbers:
0
1
2
3
4
5

Extra Credit

1. Take this while loop, and convert it to a function that you can call and replace 10 in the test (i < 10) with a
variable.

2. Now use this function to rewrite the script to try different numbers.

3. Add another variable to the function arguments that you can pass in that let’s you change the + 1 on line 8 so
you can change how much it increments by.

4. Rewrite the script again to use this function to see what effect that has.

5. Now, write it to use for-loops and range instead. Do you need the incrementor in the middle anymore?
What happens if you don’t get rid of it?

If at any time that you’re doing this it goes crazy (it probably will) just hold down CTRL and hit c (CTRL-c) and the
program will abort.

86 Exercise 33: While Loops

Exercise 34: Accessing Elements Of Lists

Lists are pretty useful, but unless you can get at the things in them they aren’t all that good. You can already go
through the elements of a list in order, but what if you want say, the 5th element? You need to know how to access the
elements of a list. Here’s how you would access the first element of a list:

animals = ['bear', 'tiger', 'penguin', 'zeebra']
bear = animals[0]

You take a list of animals, and then you get the first one using 0?! How does that work? Well, because of the way
math works, Python start its lists at 0 rather than 1. It seems weird, but there’s many advantages to this, even though it
is actually mostly arbitrary.

The best way to explain why is by showing you the difference between how you use numbers and how programmers
have to use numbers with a little example using the animals above.

Imagine you’re watching the four animals in our list above ([’bear’, ’tiger’, ’penguin’, ’zeebra’])
run in a race. Now they win in the order we have them in this list. The race was really exciting because, well the
animals didn’t kill eachother and somehow managed to run a race. Your friend however shows up late and wants to
know who won. Does your friend say, “Hey, who came in zero*th?” No, he says, “Hey says, hey who came in *first?”

This is because the order of the animals is important. You can’t have the second animal without the first animal, and
can’t have the third without the second. It’s also impossible to have a “zeroth” animal since zero means nothing. How
can you have a nothing win a race? It just doesn’t make sense. We call these kinds of numbers “ordinal” numbers,
because they indicate an ordering of things.

Now, programmers however can’t think this way because they can pick any element out of a list at any point. To a
programmer, the above list is more like a deck of cards. If they want the tiger, they grab it. If they want the zeebra,
they can take it too. This need to pull elements out of lists at random means that they need a way to indicate elements
consistently by an address, an “index”, and the best way to do that is to start the indices at 0. Trust me on this, the
math is way easier for these kinds of accesses. In fact, this kind of number is a “cardinal” number and means you can
pick at random, so there needs to be a 0 element.

Alright, how does this help you work with lists? Simple, every time you say to yourself, “I want the 3rd animal,” you
translate this “ordinal” number to a “cardinal” number by subtracting 1. The “3rd” animal is at index 2 and is the
penguin. You have to do this because you’ve spent your whole life using ordinal numbers, and now you have to think
in cardinal. Just subtract 1 and you’ll be good.

Remember: ordinal == ordered, 1st; cardinal == cards at random, 0.

Let’s practice this. I’ve given you a list of animals, and then exercises where I tell you to write down what animal you
get for that ordinal or cardinal number. Remember if I say “first”, “second”, etc. then I’m using ordinal, so subtract 1.
If I give you cardinal (0, 1, 2) then use it directly.

animals = ['bear', 'python', 'peacock', 'kangaroo', 'whale', 'platypus']

1. The animal at 1.

2. The 3rd animal.

87

Learn Python The Hard Way, Release 0.5

3. The 1st animal.

4. The animal at 3.

5. The 5th animal.

6. The animal at 2.

7. The 6th animal.

8. The animal at 4.

For each of these, write out a full sentence of the form: “The 1st animal is at 0 and is a bear.” Then say it backwards,
“The animal at 0 is the 1st animal and is a bear.”

Use your python to check your answers.

Extra Credit

1. Read about ordinal and cardinal numbers online.

2. With what you know of the difference between these types of numbers, can you explain why this really is 2010?
(Hint, you can’t pick years at random.)

3. Write some more lists and work out similar indexes until you can translate them.

4. Use Python to check your answers to this as well.

Warning: Programmers will tell you to read this guy named “Dijkstra” on this subject. I recommend you avoid
his writings on this unless you enjoy being yelled at by someone who stopped programming at the same time
programming started.

88 Exercise 34: Accessing Elements Of Lists

Exercise 35: Branches and Functions

You’ve learned to do if-statements, and you can do functions. You also know arrays. Now it’s time to bend your
mind. Type this in, and see if you can figure out what it’s doing.

1 from sys import exit
2

3 def gold_room():
4 print "This room is full of gold. How much do you take?"
5

6 next = raw_input("> ")
7 if "0" in next or "1" in next:
8 how_much = int(next)
9 else:

10 dead("Man, learn to type a number.")
11

12 if how_much < 50:
13 print "Nice, you're not greedy, you win!"
14 exit(0)
15 else:
16 dead("You greedy bastard!")
17

18

19 def bear_room():
20 print "There is a bear here."
21 print "The bear has a bunch of honey."
22 print "The fat bear is in front of another door."
23 print "How are you going to move the bear?"
24 bear_moved = False
25

26 while True:
27 next = raw_input("> ")
28

29 if next == "take honey":
30 dead("The bear looks at you then pimp slaps your face off.")
31 elif next == "taunt bear" and not bear_moved:
32 print "The bear has moved from the door. You can go through it now."
33 bear_moved = True
34 elif next == "taunt bear" and bear_moved:
35 dead("The bear gets pissed off and chews your crotch off.")
36 elif next == "open door":
37 gold_room()
38 else:
39 print "I got no idea what that means."
40

41

42 def cthulu_room():
43 print "Here you see the great evil Cthulu."

89

Learn Python The Hard Way, Release 0.5

44 print "He, it, whatever stares at you and you go insane."
45 print "Do you flee for your life or eat your head?"
46

47 next = raw_input("> ")
48

49 if "flee" in next:
50 start()
51 elif "head" in next:
52 dead("Well that was tasty!")
53 else:
54 cthulu_room()
55

56

57 def dead(why):
58 print why, "Good job!"
59 exit(0)
60

61 def start():
62 print "You are in a dark room."
63 print "There is a door to your right and left."
64 print "Which one do you take?"
65

66 next = raw_input("> ")
67

68 if next == "left":
69 bear_room()
70 elif next == "right":
71 cthulu_room()
72 else:
73 dead("You stumble around the room until you starve.")
74

75

76 start()

What You Should See

Here’s me taking too much gold:

$ python ex35.py
You are in a dark room.
There is a door to your right and left.
Which one do you take?
> left
There is a bear here.
The bear has a bunch of honey.
The fat bear is in front of another door.
How are you going to move the bear?
> taunt bear
The bear has moved from the door. You can go through it now.
> open door
This room is full of gold. How much do you take?
> asf
Man, learn to type a number. Good job!
$

90 Exercise 35: Branches and Functions

Learn Python The Hard Way, Release 0.5

Extra Credit

1. Draw a map of the game and how you flow through it.

2. Fix all of your mistakes, including spelling mistakes.

3. Write comments for the functions you don’t understand. Remember doc comments?

4. Add more to the game. How much can you do to simplify it and still expand it.

5. The gold_room has a weird way of getting you to type a number. What are all the bugs in this way of doing
it? Can you make it better than just checking if “1” or “0” are in the number? Look at how int() works for
clues.

Extra Credit 91

Learn Python The Hard Way, Release 0.5

92 Exercise 35: Branches and Functions

Exercise 36: Designing and Debugging

I’m going to give you some rules now that you know if-statements, for-loops, and while-loops that will
keep you out of trouble. I’m also going to give you some tips on debugging so that you can figure out problems with
your program. Finally, you’re going to design a similar little game as in the last exercise but with a slight twist.

Rules For If-Statements

1. Every if-statement must have an else.

2. If this else should never be run, because it doesn’t make sense, then you must use a die function in the else
that prints out an error message and dies, just like we did in the last exercise. This will find many errors.

3. Never nest if-statements more than 2 deep and always try to do them 1 deep. This means if you put an
if in an if then you should be looking to move that second if into another function.

4. Treat if-statements like paragraphs, where each if,elif,else grouping is like a set of sentences. Put
blank lines before and after them.

5. Your boolean tests should be simple. If they are complex, move their calculations to variables earlier in your
function and use a good name for the variable.

If you follow these simple rules you will start writing better code than most programmers currently coding. Go back
to the last exercise and see if I followed all of these rules. If not, fix it.

Rules For Loops

1. Use a while-loop only to loop forever, and that means probably never. This only applies to Python, other
languages are different.

2. Use a for-loop for all other kinds of looping, especially if there is a fixed or limited number of things to loop
over.

Tips For Debugging

1. Do not use a “debugger”. A debugger is like doing a full-body scan on a sick person. You don’t get any specific
useful information, and you find a whole lot of information that doesn’t help and is just confusing.

2. The best way to debug a program is to use print to print out the values of variables at points in the program
to see where they go wrong.

3. Make sure parts of your programs work as you work on them. Do not write massive files of code and then run
them at the very end. Code a little, run a little, fix a little.

93

Learn Python The Hard Way, Release 0.5

Homework

You should now write a similar game to the one that I created in the last exercise. It can be any kind of game you want
in the same flavor, and you should spend a week on it making it as interesting as you can. For extra credit, you should
use lists, functions, and modules (remember those from Ex. 13?) as much as possible, and find as many new pieces of
Python as you can to make the game work.

There is one catch though, you should write up your idea for the game first. Before you start coding you must write up
a map for your game. Create the rooms, the monsters, and the traps that the player must go through on paper before
you code.

Once you have your map, then you should try to code it up. If you find problems with the map then adjust it and make
the code match.

One final word of advice: Every programmer becomes paralyzed by irrational fear at starting out on a new large
project. They then use procrastination to avoid confronting this fear and end up not getting their program working or
even started. I do this. Everyone does this. The best way to get rid of this is to make a list of things you should do,
and then do them one at a time, bit by bit.

Just start doing it, do a small version, make it bigger, keep a list of things to do, and do them.

94 Exercise 36: Designing and Debugging

Exercise 37: Symbol Review

It’s time to review the symbols and Python words you know and to try to pick up a few more for the next few lessons.
What I’ve done here is written out all the Python symbols and keywords that are important to know.

In this lesson you are to take each keyword, and first try to write out what it does from memory. Next, go search online
for it and see what it really does. It may be hard because some of these are going to be impossible to search for, but
keep trying.

If you got one of these wrong from memory, then write up an index card with the correct definition and try to “correct”
your memory. If you just didn’t know about it then write down what it is and save it for later.

Finally, use each of these in a small Python program, or as many as you can get done. The key here is to find out what
the symbol does, make sure you got it right, correct it if you don’t, then use it to lock it in.

Keywords

• and

• del

• from

• not

• while

• as

• elif

• global

• or

• with

• assert

• else

• if

• pass

• yield

• break

• except

• import

95

Learn Python The Hard Way, Release 0.5

• print

• class

• exec

• in

• raise

• continue

• finally

• is

• return

• def

• for

• lambda

• try

Data Types

For data types, write out what makes up each one. For example, with strings write out how you create a string. For
numbers write out a few numbers.

• True

• False

• None

• strings

• numbers

• floats

• lists

String Escapes Sequences

For string escape sequences, use them in strings to make sure they do what you think they do.

• \\

• \’

• \"

• \a

• \b

• \f

• \n

• \r

96 Exercise 37: Symbol Review

Learn Python The Hard Way, Release 0.5

• \t

• \v

String Formats

Same thing for string formats, use them in some strings to know what they do.

• %d

• %i

• %o

• %u

• %x

• %X

• %e

• %E

• %f

• %F

• %g

• %G

• %c

• %r

• %s

• %%

Operators

Some of these may be unfamiliar to you, but look them up anyway. Find out what they do, and if you still can’t figure
out what it does, save it for later.

• +

• -

• *

• **

• /

• //

• %

• <

• >

• <=

String Formats 97

Learn Python The Hard Way, Release 0.5

• >=

• ==

• !=

• <>

• ()

• []

• { }

• @

• ,

• :

• .

• =

• ;

• +=

• -=

• *=

• /=

• //=

• %=

• **=

You should spend about a week on this, but if you finish it faster that’s great. The point though is to try to get coverage
on all these symbols and make sure they’re locked in your head. What’s also important is to find out what you don’t
know so you can fix it later.

98 Exercise 37: Symbol Review

Exercise 38: Reading Code

You should now go out and find some Python code to read. You should be finding and reading any Python code you
can and trying to steal ideas that you find. You actually should have enough knowledge to be able to read, but maybe
not understand what the code does. What I’m going to teach you in this lesson is how to apply things you’ve learned
to understand other people’s code.

First, take the code you want to understand and print it out. Yes, print it out, because your eyes and brain are more
used to reading paper than computer screens. Make sure you only print a few pages at a time.

Second, you should go through your printout and take notes of the following:

1. Functions and what they do.

2. Where each variable is first given a value.

3. Any variables with the same names in different parts of the program. These may be trouble later.

4. Any if-statements without else clauses. Are they right?

5. Any while-loops that might not end.

6. Finally, any parts of code that you can’t understand for whatever reason.

Third, once you have all of this marked up, try to explain it to yourself by writing comments as you go. Explain the
functions, how they’re used, what variables are involved, anything you can to figure this code out.

Lastly, on all of the difficult parts, trace the values of each variable line by line function by function. In fact, do another
printout and write in the margin the value of each variable that you need to “trace”.

Once you have a good idea of what the code does, go back to the computer and read it again to see if you find new
things. Keep finding more code and doing this until you don’t need the printouts anymore.

Extra Credit

1. Go find out what a “flow chart” is and write a few.

2. If you find errors in code you’re reading, try to fix them and send the author your changes.

3. Another technique for when you’re not using paper is to put # comments with your notes in the code. Sometimes,
these could become the actual comments to help the next person.

99

Learn Python The Hard Way, Release 0.5

100 Exercise 38: Reading Code

Exercise 39: Doing Things To Lists

You learned about lists and when you learned about while-loops you “appended” numbers to the end of a list then
printed them out. There was also extra credit where you were supposed to find all the other things you can do to lists
in the Python documentation. That was a while back, so go find in the book where you did that and review if you don’t
know what I’m talking about.

Found it? Remember it? Good. When you did this you had a list, and you “called” the function append on it.
However you may not really what’s going on so let’s see what we can do to lists and how doing things with “on” them
works really.

When you type Python code that reads mystuff.append(’hello’) you are actually setting off a chain of events
inside Python to cause something to happen to the mystuff list. Here’s how it works:

1. Python sees you mentioned mystuff and looks up that variable. It might have to look backwards to see if you
created with =, look and see if it is a function argument, or maybe it’s a global variable. Either way it has to find
the mystuff first.

2. Once it finds mystuff it then hits the . (period) operator and starts to look at variables that are a part of
mystuff. Since mystuff is a list, it knows that mystuff has a bunch of functions.

3. It then hits append and compares the name “append” to all the ones that mystuff says it owns. If append is
in there (it is) then it grabs that to use.

4. Next Python sees the ((parenthesis) and realizes, “Oh hey, this should be a function.” At this point it calls the
function just like normally, but instead it calls the function with an extra argument.

5. That extra argument is ... mylist! I know, weird right? But that’s how Python works so it’s best to just
remember it and assume that’s alright. What happens then, at the end of all this is a function call that looks like:
append(mystuff, ’hello’) instead of what you read which is mystuff.append(’hello’).

For the most part you don’t have to know that this is going on, but it helps when you get error messages from python
like this:

$ python
Python 2.6.5 (r265:79063, Apr 16 2010, 13:57:41)
[GCC 4.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> class Thing:
... def test(hi):
... print "hi"
...
>>> a = Thing()
>>> a.test("hello")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: test() takes exactly 1 argument (2 given)
>>>

101

Learn Python The Hard Way, Release 0.5

What was all that? Well, this is me typing into the Python shell and showing you some magic. You haven’t seen class
yet but we’ll get into those later. For now you see how Python said test() takes exactly 1 argument (2
given). If you see this it means that python changed a.test("hello") to test(a, "hello") and that
somewhere someone messed up and didn’t add the argument for a.

That might be a lot to take in, but we’re going to spend a few exercises getting this concept firm in your brain. To kick
things off, here’s an exercise that mixes strings and lists for all kinds of fun.

1 ten_things = "Apples Oranges Crows Telephone Light Sugar"
2

3 print "Wait there's not 10 things in that list, let's fix that."
4

5 stuff = ten_things.split(' ')
6 more_stuff = ["Day", "Night", "Song", "Frisbee", "Corn", "Banana", "Girl", "Boy"]
7

8 while len(stuff) != 10:
9 next_one = more_stuff.pop()

10 print "Adding: ", next_one
11 stuff.append(next_one)
12 print "There's %d items now." % len(stuff)
13

14 print "There we go: ", stuff
15

16 print "Let's do some things with stuff."
17

18 print stuff[1]
19 print stuff[-1] # whoa! fancy
20 print stuff.pop()
21 print ' '.join(stuff) # what? cool!
22 print '#'.join(stuff[3:5]) # super stellar!

What You Should See

$ python ex39.py

Wait there's not 10 things in that list, let's fix that.
Adding: Boy
There's 7 items now.
Adding: Girl
There's 8 items now.
Adding: Banana
There's 9 items now.
Adding: Corn
There's 10 items now.
There we go: ['Apples', 'Oranges', 'Crows', 'Telephone', 'Light', 'Sugar', 'Boy', 'Girl', 'Banana', 'Corn']
Let's do some things with stuff.
Oranges
Corn
Corn
Apples Oranges Crows Telephone Light Sugar Boy Girl Banana
Telephone#Light

102 Exercise 39: Doing Things To Lists

Learn Python The Hard Way, Release 0.5

Extra Credit

1. Take each function that is called, and go through the steps outlined above to translate them to what Python does.
For example, ’ ’.join(things) is join(’ ’, things).

2. Translate these two ways to view the function calls in English. For example, ’ ’.join(things) reads
as, “Join things with ‘ ‘ between them.” Meanwhile, join(’ ’, things) means, “Call join with ‘ ‘ and
things.” Understand how they’re really the same thing.

2. Go read about “Object Oriented Programming” online. Confused? Yeah I was too. Don’t worry though we’ll
learn enough to be dangerous then you can slowly learn more later.

3. Read up on what a “class” is in Python. Do not read about how other languages use the word “class”. That
will only mess you up.

4. What’s the relationship between dir(something) and the “class” of something.

5. If you don’t have any idea what I’m talking about don’t worry. Programmers like to feel smart so they invented
Object Oriented Programming, named it OOP, and then used it way too much. You think that’s hard you should
try to use “functional programming”.

Extra Credit 103

Learn Python The Hard Way, Release 0.5

104 Exercise 39: Doing Things To Lists

Exercise 40: Dictionaries, Oh Lovely
Dictionaries

Well, I now have to hurt you with another container you can use, because once you learn this container a massive
world of ultra-cool will be yours. It is the most useful container ever: the dictionary.

Python calls them “dicts”, other languages call them, “hashes”. I tend to use both names, but it doesn’t matter, what
does matter is what they do when compared to lists. You see, a list lets you do this:

>>> things = ['a', 'b', 'c', 'd']
>>> print things[1]
b
>>> things[1] = 'z'
>>> print things[1]
z
>>> print things
['a', 'z', 'c', 'd']
>>>

You can use numbers to “index” into a list, meaning you can use numbers to get find out what’s in them. You should
know this by now, but what a dict does is let you use anything not just numbers. Yes, a dict associates one thing to
another, no matter what it is. Here take a look:

>>> stuff = {'name': 'Zed', 'age': 36, 'height': 6*12+2}
>>> print stuff['name']
Zed
>>> print stuff['age']
36
>>> print stuff['height']
74
>>> stuff['city'] = "San Francisco"
>>> print stuff['city']
San Francisco
>>>

Take a close look at this and you’ll see that instead of just numbers we’re using strings to say what we want from the
stuff dictionary. We can also put new things into the dictionary with strings. It doesn’t have to be strings though,
we can also do this:

In this one I just used numbers. I could use anything. Well almost but just pretend you can use anything for now.

Of course, a dictionary that you can only put things in is pretty stupid, so here’s how you delete things, with the del
keyword:

>>> del stuff['city']
>>> del stuff[1]
>>> del stuff[2]

105

Learn Python The Hard Way, Release 0.5

>>> stuff
{'name': 'Zed', 'age': 36, 'height': 74}
>>>

We’ll now do an exercise that you must study very carefully. I want you to type this exercise in and try to understand
what’s going on. It is a very interesting exercise that will hopefully have a big light turn on in your head very soon.

1 cities = {'CA': 'San Francisco', 'MI': 'Detroit',
2 'FL': 'Jacksonville'}
3

4 cities['NY'] = 'New York'
5 cities['OR'] = 'Portland'
6

7 def find_city(map, state):
8 if state in map:
9 return map[state]

10 else:
11 return "Not found."
12

13 # ok pay attention!
14 cities['_find'] = find_city
15

16 while True:
17 print "State? (ENTER to quit)",
18 state = raw_input("> ")
19

20 if not state: break
21

22 # this line is the most important ever! study!
23 city_found = cities['_find'](cities, state)
24 print city_found

What You Should See

$ python ex40.py
State? (ENTER to quit) > CA
San Francisco
State? (ENTER to quit) > FL
Jacksonville
State? (ENTER to quit) > O
Not found.
State? (ENTER to quit) > OR
Portland
State? (ENTER to quit) > VT
Not found.
State? (ENTER to quit) >

Extra Credit

1. Go find the Python documentation for dictionaries (a.k.a. dicts, dict) and try to do even more things to them.

2. Find out what you can’t do with dictionaries. A big one is that they don’t have order, so try playing with that.

3. Try doing a for-loop over them, and then try the items() function in a for-loop.

106 Exercise 40: Dictionaries, Oh Lovely Dictionaries

Exercise 41: A Room With A View Of A
Bear With A Broadsword

Did you figure out the secret of the function in the dict from the last exercise? Could you explain it to yourself? Let
me explain it and you can compare your explanation with mine. Here’s the lines of code we’re talking about:

cities['_find'] = find_city
city_found = cities['_find'](cities, state)

Remember that functions can be variables too. The def find_city just makes another variable name in your
current module that you can then use anywhere. In this code first we are putting the function find_city into the
dict cities as ’_find’. This is the same as all the others where we set states to some cities, but in this case it’s
actually the function we put in there.

Alright, so once we know that find_city is in the dict at _find that means we can do work with it. The 2nd line
of code (used later in the previous exercise) can be broken down like this:

1. Python sees city_found = and knows we want to make a new variable.

2. It then reads cities and finds that variable, it’s a dict.

3. Then there’s [’_find’] which will index into the cities dict and pull out whatever is at _find.

4. What is at [’_find’] is our function find_city so Python then knows it’s got a function, and when it hits
(it does the function call.

5. The parameters cities, state are passed to this function find_city, and it runs because it’s called.

6. find_city then tries to lookup states inside cities, and returns what it finds or a message saying it
didn’t find anything.

7. Python takes what find_city returned, and finally that is what is assigned to city_found all the way at
the beginning.

I’m going to teach you a trick. Sometimes these things read better in English if you read the code backwards, so let’s
try that. Here’s how I would do it for that same line (remember backwards):

1. state and city are...

2. passed as parameters to...

3. a function at...

4. ’_find’ inside...

5. the dict cities...

6. and finally assigned to city_found.

Here’s another way to read it, this time “inside-out”.

1. Find the center item of the expression, in this case [’_find’].

107

Learn Python The Hard Way, Release 0.5

2. Go counter-clock-wise and you have a dict cities, so this finds the element _find in cities.

3. That gives us a function. Keep going counter-clock-wise and you get to the parameters.

4. The parameters are passed to the function, and that returns a result. Go counter-clock-wise again.

5. Finally, we are at the city_found = assignment and we have our end result.

After decades of programming I don’t even think about these three ways to read code. I just glance at it and I know
what it means, and I can even glance at a whole screen of code and all the bugs and errors jump out at me. That took
an incredibly long time and quite a bit more study than is sane. To get that way, I learned these three ways of reading
most any programming language:

1. Front to back.

2. Back to front.

3. Counter-clock-wise.

Try them out when you have a difficult statement to figure out.

Let’s now type in your next exercise, and then go over after that. This one is gonna be fun.

1 from sys import exit
2 from random import randint
3

4 def death():
5 quips = ["You died. You kinda suck at this.",
6 "Your mom would be proud. If she were smarter.",
7 "Such a luser.",
8 "I have a small puppy that's better at this."]
9

10 print quips[randint(0, len(quips)-1)]
11 exit(1)
12

13

14 def princess_lives_here():
15 print "You see a beautiful Princess with a shiny crown."
16 print "She offers you some cake."
17

18 eat_it = raw_input("> ")
19

20 if eat_it == "eat it":
21 print "You explode like a pinata full of frogs."
22 print "The Princess cackles and eats the frogs. Yum!"
23 return 'death'
24

25 elif eat_it == "do not eat it":
26 print "She throws the cake at you and it cuts off your head."
27 print "The last thing you see is her munching on your torso. Yum!"
28 return 'death'
29

30 elif eat_it == "make her eat it":
31 print "The Princess screams as you cram the cake in her mouth."
32 print "Then she smiles and cries and thanks you for saving her."
33 print "She points to a tiny door and says, 'The Koi needs cake too.'"
34 print "She gives you the very last bit of cake and shoves you in."
35 return 'gold_koi_pond'
36

37 else:
38 print "The princess looks at you confused and just points at the cake."
39 return 'princess_lives_here'

108 Exercise 41: A Room With A View Of A Bear With A Broadsword

Learn Python The Hard Way, Release 0.5

40

41 def gold_koi_pond():
42 print "There is a garden with a koi pond in the center."
43 print "You walk close and see a massive fin poke out."
44 print "You peek in and a creepy looking huge Koi stares at you."
45 print "It opens its mouth waiting for food."
46

47 feed_it = raw_input("> ")
48

49 if feed_it == "feed it":
50 print "The Koi jumps up, and rather than eating the cake, eats your arm."
51 print "You fall in and the Koi shrugs than eats you."
52 print "You are then pooped out sometime later."
53 return 'death'
54

55 elif feed_it == "do not feed it":
56 print "The Koi grimaces, then thrashes around for a second."
57 print "It rushes to the other end of the pond, braces against the wall..."
58 print "then it *lunges* out of the water, up in the air and over your"
59 print "entire body, cake and all."
60 print "You are then pooped out a week later."
61 return 'death'
62

63 elif feed_it == "throw it in":
64 print "The Koi wiggles, then leaps into the air to eat the cake."
65 print "You can see it's happy, it then grunts, thrashes..."
66 print "and finally rolls over and poops a magic diamond into the air"
67 print "at your feet."
68

69 return 'bear_with_sword'
70

71 else:
72 print "The Koi gets annoyed and wiggles a bit."
73 return 'gold_koi_pond'
74

75

76 def bear_with_sword():
77 print "Puzzled, you are about to pick up the fish poop diamond when"
78 print "a bear bearing a load bearing sword walks in."
79 print '"Hey! That\' my diamond! Where\'d you get that!?"'
80 print "It holds its paw out and looks at you."
81

82 give_it = raw_input("> ")
83

84 if give_it == "give it":
85 print "The bear swipes at your hand to grab the diamond and"
86 print "rips your hand off in the process. It then looks at"
87 print 'your bloody stump and says, "Oh crap, sorry about that."'
88 print "It tries to put your hand back on, but you collapse."
89 print "The last thing you see is the bear shrug and eat you."
90 return 'death'
91

92 elif give_it == "say no":
93 print "The bear looks shocked. Nobody ever told a bear"
94 print "with a broadsword 'no'. It asks, "
95 print '"Is it because it\'s not a katana? I could go get one!"'
96 print "It then runs off and now you notice a big iron gate."
97 print '"Where the hell did that come from?" You say.'

109

Learn Python The Hard Way, Release 0.5

98

99 return 'big_iron_gate'
100

101 def big_iron_gate():
102 print "You walk up to the big iron gate and see there's a handle."
103

104 open_it = raw_input("> ")
105

106 if open_it == 'open it':
107 print "You open it and you are free!"
108 print "There are mountains. And berries! And..."
109 print "Oh, but then the bear comes with his katana and stabs you."
110 print '"Who\'s laughing now!? Love this katana."'
111

112 return 'death'
113

114 else:
115 print "That doesn't seem sensible. I mean, the door's right there."
116 return 'big_iron_gate'
117

118

119 ROOMS = {
120 'death': death,
121 'princess_lives_here': princess_lives_here,
122 'gold_koi_pond': gold_koi_pond,
123 'big_iron_gate': big_iron_gate,
124 'bear_with_sword': bear_with_sword
125 }
126

127

128 def runner(map, start):
129 next = start
130

131 while True:
132 room = map[next]
133 print "\n--------"
134 next = room()
135

136 runner(ROOMS, 'princess_lives_here')

It’s a lot of code, but go through it, make sure it works, play it.

What You Should See

Here’s me playing the game. Bears are cool.

$ python ex41.py

You see a beautiful Princess with a shiny crown.
She offers you some cake.
> make her eat it
The Princess screams as you cram the cake in her mouth.
Then she smiles and cries and thanks you for saving her.
She points to a tiny door and says, 'The Koi needs cake too.'
She gives you the very last bit of cake and shoves you in.

110 Exercise 41: A Room With A View Of A Bear With A Broadsword

Learn Python The Hard Way, Release 0.5

There is a garden with a koi pond in the center.
You walk close and see a massive fin poke out.
You peek in and a creepy looking huge Koi stares at you.
It opens its mouth waiting for food.
> throw it in
The Koi wiggles, then leaps into the air to eat the cake.
You can see it's happy, it then grunts, thrashes...
and finally rolls over and poops a magic diamond into the air
at your feet.

Puzzled, you are about to pick up the fish poop diamond when
a bear bearing a load bearing sword walks in.
"Hey! That' my diamond! Where'd you get that!?"
It holds its paw out and looks at you.
> say no
The bear looks shocked. Nobody ever told a bear
with a broadsword 'no'. It asks,
"Is it because it's not a katana? I could go get one!"
It then runs off and now you notice a big iron gate.
"Where the hell did that come from?" You say.

You walk up to the big iron gate and see there's a handle.
> open it
You open it and you are free!
There are mountains. And berries! And...
Oh, but then the bear comes with his katana and stabs you.
"Who's laughing now!? Love this katana."

I have a small puppy that's better at this.
$

Extra Credit

1. Explain how returning the next room works.

2. Create more rooms making the game bigger.

3. Instead of having each function print itself, learn about “doc comments”. See if you can write the room descrip-
tion as doc comments, and change the runner to print them.

4. Once you have doc comments as the room description, do you need to have the function prompt even? Have the
runner prompt the user, and pass that in to each function. You functions should just be if-statements printing the
result and returning the next room.

5. This is actually a small version of something called a “finite state machine”. Go read about them. They might
not make sense but try anyway.

Extra Credit 111

Learn Python The Hard Way, Release 0.5

112 Exercise 41: A Room With A View Of A Bear With A Broadsword

Exercise 42: Getting Classy

While it’s fun to put functions inside of dictionaries, you’d think there’d be something in Python that does this for you.
There is and it’s the class keyword. Using class is how you create an even more awesome “dict with functions”
than the one you made in the last exercise. Classes have all sorts of powerful features and uses that I could never go
into in this book. Instead, you’ll just use them like they’re fancy dictionaries with functions.

A programming language that uses classes is called an “Object Oriented Programming”. This is an old style of
programming where you make “things” and you “tell” those things to do work. You’ve been doing a lot of this. A
whole lot. You just didn’t know it. Remember when you were doing this:

stuff = ['Test', 'This', 'Out']
print ' '.join(stuff)

You were actually using classes. The variable stuff is actually a list class. The ’ ’.join(stuff) is
calling the join function of the string ’ ’ (just an empty space) is also a class, a string class. It’s all classes!

Well, and objects, but let’s just skip that word for now. You’ll learn what those are after you make some classes. How
do you make classes? Very similar to how you made the ROOMS dict, but easier:

class TheThing:

def __init__(self):
self.number = 0

def some_function(self):
print "I got called."

def add_me_up(self, more):
self.number += more
return self.number

two different things
a = TheThing()
b = TheThing()

a.some_function()
b.some_function()

print a.add_me_up(20)
print a.add_me_up(20)
print b.add_me_up(30)
print b.add_me_up(30)

print a.number
print b.number

You see that self in the parameters? You know what that is? That’s right, it’s the “extra” parameter that Python

113

Learn Python The Hard Way, Release 0.5

creates so you can type a.some_function() and then it will translate that to really be some_function(a).
Why use self? Your function has no idea what you are calling any one “instance” of TheThing or another, so you
just use a generic name self that way you can write your function and it will always work.

You actually could use another name rather than self but then every Python programmer on the planet would hate
you, so don’t. Only jerks change things like that and I taught you better. Be nice to people who have to read what you
write because ten years later all code is horrible.

Next, see the __init__ function? That is how you setup a Python class with internal variables. You can set them on
self with the . (period) just like I show you here. See also how we then use this in add_me_up() later which lets
you add to the self.number you created. Later you can see how we use this to add to our number and print it.

Classes are very powerful, so you should go read about them. Read everything you can and play with them. You
actually know how to use them, you just have to try it. In fact, I want to go play some guitar right now so I’m not
going to give you an exercise to type. You’re going to go write an exercise using classes.

Here’s how we would do exercise 41 but using classes instead of the thing we created:

1 from sys import exit
2 from random import randint
3

4 class Game(object):
5

6 def __init__(self, start):
7 self.quips = [
8 "You died. You kinda suck at this.",
9 "Your mom would be proud. If she were smarter.",

10 "Such a luser.",
11 "I have a small puppy that's better at this."
12]
13 self.start = start
14

15 def play(self):
16 next = self.start
17

18 while True:
19 print "\n--------"
20 room = getattr(self, next)
21 next = room()
22

23

24 def death(self):
25 print self.quips[randint(0, len(self.quips)-1)]
26 exit(1)
27

28

29 def princess_lives_here(self):
30 print "You see a beautiful Princess with a shiny crown."
31 print "She offers you some cake."
32

33 eat_it = raw_input("> ")
34

35 if eat_it == "eat it":
36 print "You explode like a pinata full of frogs."
37 print "The Princess cackles and eats the frogs. Yum!"
38 return 'death'
39

40 elif eat_it == "do not eat it":
41 print "She throws the cake at you and it cuts off your head."
42 print "The last thing you see is her munching on your torso. Yum!"

114 Exercise 42: Getting Classy

Learn Python The Hard Way, Release 0.5

43 return 'death'
44

45 elif eat_it == "make her eat it":
46 print "The Princess screams as you cram the cake in her mouth."
47 print "Then she smiles and cries and thanks you for saving her."
48 print "She points to a tiny door and says, 'The Koi needs cake too.'"
49 print "She gives you the very last bit of cake and shoves you in."
50 return 'gold_koi_pond'
51

52 else:
53 print "The princess looks at you confused and just points at the cake."
54 return 'princess_lives_here'
55

56 def gold_koi_pond(self):
57 print "There is a garden with a koi pond in the center."
58 print "You walk close and see a massive fin poke out."
59 print "You peek in and a creepy looking huge Koi stares at you."
60 print "It opens its mouth waiting for food."
61

62 feed_it = raw_input("> ")
63

64 if feed_it == "feed it":
65 print "The Koi jumps up, and rather than eating the cake, eats your arm."
66 print "You fall in and the Koi shrugs than eats you."
67 print "You are then pooped out sometime later."
68 return 'death'
69

70 elif feed_it == "do not feed it":
71 print "The Koi grimaces, then thrashes around for a second."
72 print "It rushes to the other end of the pond, braces against the wall..."
73 print "then it *lunges* out of the water, up in the air and over your"
74 print "entire body, cake and all."
75 print "You are then pooped out a week later."
76 return 'death'
77

78 elif feed_it == "throw it in":
79 print "The Koi wiggles, then leaps into the air to eat the cake."
80 print "You can see it's happy, it then grunts, thrashes..."
81 print "and finally rolls over and poops a magic diamond into the air"
82 print "at your feet."
83

84 return 'bear_with_sword'
85

86 else:
87 print "The Koi gets annoyed and wiggles a bit."
88 return 'gold_koi_pond'
89

90

91 def bear_with_sword(self):
92 print "Puzzled, you are about to pick up the fish poop diamond when"
93 print "a bear bearing a load bearing sword walks in."
94 print '"Hey! That\' my diamond! Where\'d you get that!?"'
95 print "It holds its paw out and looks at you."
96

97 give_it = raw_input("> ")
98

99 if give_it == "give it":
100 print "The bear swipes at your hand to grab the diamond and"

115

Learn Python The Hard Way, Release 0.5

101 print "rips your hand off in the process. It then looks at"
102 print 'your bloody stump and says, "Oh crap, sorry about that."'
103 print "It tries to put your hand back on, but you collapse."
104 print "The last thing you see is the bear shrug and eat you."
105 return 'death'
106

107 elif give_it == "say no":
108 print "The bear looks shocked. Nobody ever told a bear"
109 print "with a broadsword 'no'. It asks, "
110 print '"Is it because it\'s not a katana? I could go get one!"'
111 print "It then runs off and now you notice a big iron gate."
112 print '"Where the hell did that come from?" You say.'
113

114 return 'big_iron_gate'
115

116 def big_iron_gate(self):
117 print "You walk up to the big iron gate and see there's a handle."
118

119 open_it = raw_input("> ")
120

121 if open_it == 'open it':
122 print "You open it and you are free!"
123 print "There are mountains. And berries! And..."
124 print "Oh, but then the bear comes with his katana and stabs you."
125 print '"Who\'s laughing now!? Love this katana."'
126

127 return 'death'
128

129 else:
130 print "That doesn't seem sensible. I mean, the door's right there."
131 return 'big_iron_gate'
132

133

134 a_game = Game("princess_lives_here")
135 a_game.play()

What You Should See

The output from this version of the game should be exactly the same as the previous version, and in fact you’ll notice
that some of the code is nearly the same. You should take this new version of the game and compare it to the last one
so you understand the changes that were made. Key things to really get are:

1. How you made a class Game and put functions inside it.

2. How __ini__ is a special intialization method that sets up important variables.

3. How you added functions to the class by indenting them so they were deeper under the class keyword. This
is important so study carefully how indentation creates the class structure.

4. How you indented again to put the contents of the functions under their names.

5. How colons are being used.

6. The concept of self and how it’s being used in __init__, play, and death.

7. You should go find out what getattr does inside play so that you understand what’s going on with the
operation of play. In fact, try doing this by hand inside Python to really get it.

116 Exercise 42: Getting Classy

Learn Python The Hard Way, Release 0.5

8. How a Game was created at the end and then told to play() and how that got everything started.

Extra Credit

1. Go find out what the __dict__ is and figure out how to get at it.

2. Try adding some rooms to make sure you know how to work with a class.

3. Create a two-class version of this, where one is the Map and the other is the Engine. Hint: play goes in the
Engine.

Extra Credit 117

Learn Python The Hard Way, Release 0.5

118 Exercise 42: Getting Classy

Next Steps

You are not a programmer quite yet. I like to think of this book as giving you your “programming brown belt”. You
know enough to be able to start another book on programming and you could handle it just fine. This book should
have given you the mental tools and attitude you need to go through most Python books and actually learn something.
It might even make them easy.

On the http://learnpythonthehardway.org/ website there are a few free books mentioned as ones you should move onto
next. Try them out and see how far you can get.

You could probably start hacking away at some programs right now, and if you have that itch then go ahead. Just
understand, anything you write will probably suck. That’s alright though, I suck at every programming language I first
start using. Nobody writes pure perfect gold when they are a beginner, and anyone who tells you they did is a huge
liar.

Finally, remember that this is something you have to do for a while and for at least a couple hours every night. If it
helps, while you’re struggling through learning Python every night, I’m hard at work learning to play guitar. I work at
it about 2 or 4 hours a day and still practice scales.

Everyone is a beginner at something.

119

http://learnpythonthehardway.org/

Learn Python The Hard Way, Release 0.5

120 Next Steps

Advice From An Old Programmer

You’ve finished this book and now you have decided to continue on with programming. Maybe it will be a career for
you, or maybe you’ll just do it as a hobby. For whatever reason you’ll need some advice to make sure you continue on
the right path and get the most enjoyment out of your newly chosen hobby.

I have been programming for a very long time. So long that it is incredibly boring to me. At the time that I wrote this
book I knew about 20 programming languages and could learn new ones in about a day to a week depending on how
weird they were. Eventually though this just became boring and couldn’t hold my interest.

What I discovered after this journey of learning was that the languages didn’t matter, it was what you did with them.
Actually, I always knew that, but I’d get distracted by the languages and forget it periodically. Now I never forget it,
and neither should you.

The programming language you learn and use does not matter. Do not get sucked into the religion surrounding
programing languages as that will only blind you to their true purpose of being your tool for doing interesting things.

Programming as an intellectual activity is the only art form that allows you to create interactive art. You can create
projects that other people can play with and you can talk to them indirectly. No other art form is quite this interactive.
Movies flow to the audience in one direction. Paintings don’t move. Code goes both ways.

Programming as a profession is only moderately interesting. It can be a good job, but if you want to make about the
same money and be happier you could actually just go run a fast food joint. You are much better off using code as
your secret weapon in another profession.

People who can code in the world of technology companies are a dime a dozen and get no respect. People who can
code in biology, medicine, government, sociology, physics, history, and mathematics are respected and can do amazing
things to advance those disciplines.

Of course, all of this advice is pointless. If you liked learning to write software with this book then you should try
to use it to improve your life anyway you can. You should go out and explore this weird wonderful new intellectual
pursuit that barely anyone in the last 50 years has been able to explore. Might as well enjoy it while you can.

Finally, I will say that learning to create software changes you and makes you different. Not better or worse, just
different. You may find that people treat you harshly because you can create software, maybe using words like “nerd”.
Maybe you’ll find that because you can dissect their logic that they hate arguing with you. You may even find that
simply knowing how a computer works makes you annoying and weird to them.

To this I only have one piece of advice: they can go to hell. The world needs more weird people who know how things
work and who love to figure it all out. When they treat you like this, just remember that this is your journey, not theirs.
Being different is not a crime, and people who tell you it is are just jealous that you’ve picked up a skill they never in
their wildest dreams could acquire.

You can code. They cannot. That is pretty damn cool.

121

Learn Python The Hard Way, Release 0.5

122 Advice From An Old Programmer

Indices and tables

• genindex

• modindex

• search

123

	The Hard Way Is Easier
	Reading and Writing
	Attention to Detail
	Spotting Differences
	Do Not Copy-Paste
	A Note On Practice And Persistence
	License

	Exercise 0: The Setup
	Mac OSX
	Windows
	Linux
	Warnings For Beginners

	Exercise 1: A Good First Program
	What You Should See
	Extra Credit

	Exercise 2: Comments And Pound Characters
	What You Should See
	Extra Credit

	Exercise 3: Numbers And Math
	What You Should See
	Extra Credit

	Exercise 4: Variables And Names
	What You Should See
	Extra Credit

	Exercise 5: More Variables And Printing
	What You Should See
	Extra Credit

	Exercise 6: Strings And Text
	What You Should See
	Extra Credit

	Exercise 7: More Printing
	What You Should See
	Extra Credit

	Exercise 8: Printing, Printing
	What You Should See
	Extra Credit

	Exercise 9: Printing, Printing, Printing
	What You Should See
	Extra Credit

	Exercise 10: What Was That?
	What You Should See
	Extra Credit

	Exercise 11: Asking Questions
	What You Should See
	Extra Credit

	Exercise 12: Prompting People
	What You Should See
	Extra Credit

	Exercise 13: Parameters, Unpacking, Variables
	Hold Up! Features Have Another Name
	What You Should See
	Extra Credit

	Exercise 14: Prompting And Passing
	What You Should See
	Extra Credit

	Exercise 15: Reading Files
	What You Should See
	Extra Credit

	Exercise 16: Reading And Writing Files
	What You Should See
	Extra Credit

	Exercise 17: More Files
	What You Should See
	Extra Credit

	Exercise 18: Names, Variables, Code, Functions
	What You Should See
	Extra Credit

	Exercise 19: Functions And Variables
	What You Should See
	Extra Credit

	Exercise 20: Functions And Files
	What You Should See
	Extra Credit

	Exercise 21: Functions Can Return Something
	What You Should See
	Extra Credit

	Exercise 22: What Do You Know So Far?
	What You're Learning

	Exercise 23: Read Some Code
	Exercise 24: More Practice
	What You Should See
	Extra Credit

	Exercise 25: Even More Practice
	What You Should See
	Extra Credit

	Exercise 26: Congratulations, Take A Test!
	Exercise 27: Memorizing Logic
	The Truth Terms
	The Truth Tables

	Exercise 28: Boolean Practice
	What You Should See
	Extra Credit

	Exercise 29: What If
	What You Should See
	Extra Credit

	Exercise 30: Else And If
	What You Should See
	Extra Credit

	Exercise 31: Making Decisions
	What You Should See
	Extra Credit

	Exercise 32: Loops And Lists
	What You Should See
	Extra Credit

	Exercise 33: While Loops
	What You Should See
	Extra Credit

	Exercise 34: Accessing Elements Of Lists
	Extra Credit

	Exercise 35: Branches and Functions
	What You Should See
	Extra Credit

	Exercise 36: Designing and Debugging
	Rules For If-Statements
	Rules For Loops
	Tips For Debugging
	Homework

	Exercise 37: Symbol Review
	Keywords
	Data Types
	String Escapes Sequences
	String Formats
	Operators

	Exercise 38: Reading Code
	Extra Credit

	Exercise 39: Doing Things To Lists
	What You Should See
	Extra Credit

	Exercise 40: Dictionaries, Oh Lovely Dictionaries
	What You Should See
	Extra Credit

	Exercise 41: A Room With A View Of A Bear With A Broadsword
	What You Should See
	Extra Credit

	Exercise 42: Getting Classy
	What You Should See
	Extra Credit

	Next Steps
	Advice From An Old Programmer
	Indices and tables

